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ABSTRACT 

We studied the effects of arginine vasopressin (AVP) and oxytocin (OT) on 

glucagon release and characterized the receptors that mediate the effects of these two 

peptides by use of a number of antagonists in the perfused rat pancreas, clonal a-cells 

ln-R1-G9, and fluorescence imaging of the receptors in rat islets. AVP and OT (3 pM-3 

nM) increased glucagon release in a concentration-dependent manner from the rat 

pancreas. The antagonist with potent Vib receptor-blocking activity abolished AVP-

induced glucagon release, but did not alter OT-induced glucagon release. In contrast, 

the OT receptor antagonist abolished OT-induced glucagon release, but did not change 

the effect of AVP. Fluorescent microscopy of rat pancreatic sections also showed that 

fluorescence-labeled vasopressin and OT bound specifically to Vib and OT receptors, 

respectively. Therefore, in the rat pancreas, AVP and OT increased glucagon release 

through the activation of Vib and OT receptors, respectively. However, in clonal a-cell 

line ln-R1-G9, Vib receptors mediated both AVP- and OT-induced glucagon release, 

because the antagonists with Vib blocking activity, but not the OT receptor antagonists, 

inhibited AVP- and OT-induced glucagon release in ln-R1-G9 cells in a concentration-

dependent manner. A clonal a-cell line ln-R1-G9 was used to study the mechanisms 

underlying AVP-induced glucagon release. AVP (100 nM) increased [Ca^"^], in a 

biphasic pattern; a peak followed by a sustained plateau. When [Ca^"*"]! was stringently 

deprived by BAPTA, a Ca^^ chelator, AVP still significantly increased glucagon release. 

These results suggest that AVP caused glucagon release through both Ca^^-dependent 

and -independent pathways. For the Ca^'*'-dependent pathway, our results were 

consistent with the current concept that the Gq protein activates phospholipase C, 

which catalyzed the formation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG). IP3 induced Ca^"^ release from the endoplasmic reticulum, thereby triggering 

Ca^"^ influx via receptor-operated Ca^^ channel and increasing glucagon release. Our 

results further suggest that, DAG activates novel (nPKCs) and atypical protein kinase C 

(aPKCs). nPKCs may exert negative feedback on AVP-induced increase in IP3 

production, leading to an attenuation of [Ca^"^]], which, in turn, attenuated AVP-induced 
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glucagon release. On the other hand, aPKCs may contribute to the stimulatory effect 

of AVP on glucagon release. 
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CHAPTER I GENERAL INTRODUCTION 

Dissertation Organization 

This dissertation is written in an alternative thesis format. It contains a general 

introduction, five research papers, a general discussion, a list of references cited in the 

general introduction and discussion, and acknowledgments. The general introduction 

includes a research objective, background information, and literature review. Chapter 

II, "Characterization of receptors mediating AVP- and OT-induced glucagon release from 

the rat pancreas", and Chapter 111, "Effects of arginine vasopressin and oxytocin on 

glucagon release from clonal a-cell line ln-R1-G9: involvement of Vit receptors", have 

been published in the American Journal of Physiology and the Life Sciences, 

respectively. Chapter IV, "Mechanisms of AVP-induced glucagon release in clonal a-

cells ln-R1-G9: involvement of Ca^^-dependent and -independent pathways", and 

Chapter V, "Protein kinase C attenuates arginine vasopressin-induced increases in IP3 

and [Ca^"*^], in clonal a-cells ln-R1-G9" have been submitted for publication in the British 

Journal of Pharmacology and the European Journal of Pharmacology, respectively. 

Chapter VI, "Novel protein kinase C isozymes inhibit and atypical protein kinase C 

isozymes stimulate arginine vasopressin-induced glucagon release in clonal a-cells In-

R1-G9", will be submitted for publication in Diabetes. 

This dissertation contains most of the experimental results obtained by the 

author during her graduate study under the supervision of her major professor. Dr. 

Walter H. Hsu. 

Research Objective 

Glucagon is an important hormone for the regulation of glucose homeostasis. It 

has been clearly established that glucagon increases plasma glucose concentrations via 

direct effect upon fuel metabolism, which indicates that glucagon is a provider of 

energy for cerebral function. Although intestinal and neural cells express the 

preproglucagon gene and process preproglucagon, only the normal intact pancreatic a-
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cells can secrete true glucagon, the 29-amino acid hormone that evokes glycogenolysis 

and gluconeogenesis. Glucagon helps to increase the flow of glucose fronn hepatic 

glycogen stores to the brain during stress or shock caused by trauma, infection, and 

burns or myocardial damage. It also inhibits glucose utilization by peripheral tissues. 

This hormone, therefore, is crucial for survival. The physiological function of glucagon 

is well understood, but the physiological regulation of glucagon release is controversial. 

Diabetes mellitus is a common and serious metabolic disease that causes 

ketoacidosis and coma. In addition to a decrease in insulin release in diabetic patients, 

leading to hyperglycemia, most of these patients have excessive glucagon release, 

which further aggravates hyperglycemia in diabetes (Unger and Orci, 1995). A variety 

of nutrients and neurotransmitters, including arginine vasopressin (AVP) and oxytocin 

(OT), increase glucagon release from the pancreas (Itoh at a!., 1981; Dunning et al,, 

1984). In addition, AVP and OT at concentrations of ~2,000 to 10,000 pM are found 

in the pancreas (Amico et a)., 1988). Because plasma concentrations of AVP and OT 

are in the range of 3-25 pM (Franchini et al, 1996; Kjaer et al., 1995), these findings 

suggest the local synthesis of both peptides in the pancreas. Therefore, the pancreatic 

AVP and OT rather than systemic ones may play a major role in the regulation of 

glucagon release. Since the role of AVP and OT in the physiological regulation of 

glucagon release is not well established, it is clinically and scientifically important to 

investigate their effects and intracellular mechanisms underlying the effects of these 

two hormones on glucagon release. 

Ca^"^ plays a central role in triggering glucagon release from rat pancreas (Hii and 

Howell, 1986; Pipeieer et al., 1985). An elevation of [Ca^"^],, derived from the opening 

of Ca^'*' channels on plasma membrane of a-cells and/or release of Ca^"^ from 

intracellular Ca^"^ stores, increases glucagon release. However, the activation of 

specific effectors upstream and downstream from the Ca^'^ signal remain to be 

determined; for instance phospholipases and protein kinases may regulate the changes 

of [Ca^^li leading to an increase or a decrease in glucagon release. 

In this study, in situ pancreatic perfusion and pancreatic fluorescence imaging 

have been used to examine the physiological role of AVP- and OT-induced glucagon 

release as well as the characterization of receptors mediating their effects. However, it 

is difficult to isolate and purify a-cells from the pancreatic islets, which account for 
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only 10-25% of islet cells. Therefore, we used a clonal a-cell line, In-R1-G9 cells, 

which is derived from the ln-111-R1 hamster insulinoma cell line (Takaki et al., 1986), 

as a model for the rest of this study. Glucagon release from ln-R1-G9 cells has been 

observed and the characteristics of this cell line have been suggested to be similar to 

the a-cells of the endocrine pancreas (Rorsman, et al., 1991); for example forskolin, 

arginine, and theophylline stimulate, but somatostatin and insulin inhibit glucagon 

release from these cells (Fehmann et al., 1995). In addition, Ca^"^ and phospholipid-

dependent protein kinase C plays important roles in glucagon release in this cell line 

(Ono et al., 1986). 

In summary, the objectives of this study are: 1) to characterize the receptors 

mediating AVP- and OT-induced glucagon release in the rat pancreas and ln-R1-G9 

cells, and 2) to elucidate the mechanisms underlying the effect of AVP-induced 

glucagon release in ln-R1-G9 cells. 

Background and Literature Review 

This section provides background information related to the studies that are 

presented in the dissertation: 1) Classification of AVP and OT receptors; 2) AVP-

activated several signal transduction pathways; 3) Involvement of phospholipases in the 

mechanism of AVP; 4) Involvement of protein kinase C in the mechanism of AVP. 

The pancreatic islets 

The pancreas is an exocrine and endocrine organ, which is located in the dorsal 

part of both the epigastric and the mesogastric abdominal segments, caudal to the liver. 

The rat pancreas, which has frequently been used as an animal model to study changes 

in diabetes mellitus and islets cell tumors, is divided into four regions; lower duodenal 

(derived from the ventral primordium) and upper duodenal, gastric and splenic regions 

(derived from the dorsal primordium) (Elayat et al., 1995). The exocrine pancreas 

secretes pancreatic juice, the most important part of digestive secretion, which 

contains three principal enzymes for digestion of proteins, fats and carbohydrates. The 

endocrine pancreas, which composed of the islets of Langerhans, dispersed among the 

much larger mass of exocrine pancreas. The islets contain four major types of 
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endocrine cells: a (or A) cells, p (or B) cells, 5 (or D) cells and F (or PP) cells (Pelletier, 

1977). The a cells, which secrete glucagon, are generally located in the periphery of 

the islets and represent -20% of the islet cells. The p cells, which secrete insulin, are 

located in the center of the islets and represent -75% of the islet cells. The 8 cells, 

which secrete somatostatin, are located between a and p cells and represent -3-5% of 

the islet cells. The F cells, which secrete pancreatic polypeptide (PP), are located near 

the a cells and represent <2% of the islet cells (Karam, 1995). 

The arrangement of islet cells may have functional implications for within-islet 

communication and the pattern differs from species to species. In the rat islets, the p 

cells occupy the central region and are surrounded by a and 8 cells. In the human 

islets, the arrangement is similar, in which it has centrifugal arrangement of a cells 

relative to p cells within the pseudo-lobules (Fig. 1). The pancreas receives blood 

supply from the pancreatic branches of the cranial and caudal pancreaticoduodenal 

arteries and from the pancreatic branches of the splenic artery (Evans, 1993). The 

arterioles anastomose and form a capillary network in the islets; thus the blood flows 

from the center to the periphery and carries insulin from the central p cells to the 

peripheral a and 8 cells. This system is called "portal microcirculation" and it is 

possible that insulin may exert the within-islet control over glucagon secretion via 

microcirculation within the islets (Linger and Leiio, 1995). Gap junctions have been 

demonstrated among p cells and between a and p cells, which may create a close 

contact with each other among the islet cells. The islets of Langerhans are innervated 

by the autonomic nervous system (Hadley, 1992). The sympathetic fibers that 

innervate pancreas come from the celiac plexus and the parasympathetic fibers come 

from the vagal nerve, which reach the organ by following the arteries (Evans, 1993). 

Properties and structure of glucagon 

Glucagon is a polypeptide hormone consisting of a single chain of 29 amino 

acids, with a molecular weight of 3,485 (Fig. 2). The sequence of glucagon in most 

mammals is identical, except for guinea pig, which differs at five positions in its C-

terminal region (Huang et al., 1986; Fig. 3). The sequence in chicken (Pollock and 

Kimmel, 1975) and duck (Sundby et al., 1972) also differ from human glucagon at one 
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and two positions, respectively (Fig. 3). Neither of these changes, except that of 

guinea pig glucagon, appears to have a major impact on bioactivity. The bioactivity of 

guinea pig glucagon is reduced by 10% compared to other species, which may 

represent an adaptation to a lowered biological potency of glucagon in this species. 

A-cells 

B-cells 

D-cells 

glucagon 

insulin 

somatostatin 

Fig. 1. Schematic representation of the typical rat islet (A) and human islet (B) showing 

the arrangement of a, (3, and 8 cells (modified from Hsu and Crump, 1989; Unger and 

Leiio, 1995). 
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1 
HisYserXGInitelylThrFheYrhrYSerXAsH^^ —/\—/V—'v—' v-xv—^Serj 

(Leu) 

[Arg, 

Fig. 2. Amino acid sequence of glucagon polypeptide {modified from Karam, 1995). 

Human HSQGTFTSDYSKYLDSRRAQDFVQWLMNT 

Guinea pig Q-LK--L-V 

Chicken N 

Duck T N 

Fig. 3. Primary structures of glucagons in several vertebrate species (modified from 

Steiner et a!., 1995). 

Biosynthesis of glucagon 

Glucagon is derived from a preprohormone with a molecular weight of 18 kDa. 

The glucagon preprohormone is found in the pancreatic a cells, intestinal glucagon cells 

(L cells), and in the brain. The 179 amino acid-preproglucagon contains glicentin near 

its N-terminal and the major proglucagon fragment (MGPF) near its C-terminal (Fig. 4). 

Glicentin is a polypeptide that consists of glicentin-related polypeptide (GRPP) and 

amino acid-extended glucagon. The MGPF contains two major glucagon like peptides 

(GLP), which are GLP-1 and GLP-2 (Fig. 4). Preproglucagon is the product of a single 

mRNA, which is processed differently in different tissues. Generally, it is processed 
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primarily to the 29-amino acid glucagon and the MPGF in the pancreatic a cells, 

whereas it is processed to glicentin, GLP-1, GLP-2 and some oxyntomodulin in the L 

cells. In addition, GRPP is left in both a and L cells (Ganong, 1995). Glicentin has 

some glucagon activity, but the definite functions of GLP-1, GLP-2 and GRPP have not 

been identified yet. However, when GLP-1 is further processed by removal of its 7 N-

terminai residues and amidation, the product, GLP-1 amide, becomes a potent 

stimulator of insulin release. Oxyntomodulin inhibits gastric acid secretion. 

^ signal peptide / 

N-torminal cpp I"" 

Preproglucagon 

" 1 Jfl GAR CfiR C'terminal 

Pancreas 

Glicentin Major progiucagon fragment 

Interdomain processing site 

Progiucagon 

iKBriKBriBl CLP-I iGRUn"""!" 

. /_/„ I D ' rial C!-''-! leaBricaal clp-ii Irh 

I > / 
GRPP Glucagon lVP-1 

I 
bloactlve 

Major progiucagon fragment 

Intestine 
Progiucagon 

I Iiiri ouci. iKuriKariii 

"IKBI OUC«. IKBD • 
Glicentin 

(2S-SCm) 

GLP-1 IVP-11 GLP'II 

bioactlve 

A 
GRPP Oxyntomoduliin 

Fig. 4. Schematic of the human glucagon precursor and its tissue-specific processing of 

pancreatic a cells and intestinal glucagon cells (modified from Steiner et al., 1995). 
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Metabolism and action of glucagon 

The half-life of glucagon in the circulation is -5-10 nnin. It is degraded 

predominantly by the liver. The physiological actions of glucagon include 

glycogenolysis, gluconeogenesis, lipolysis and ketogenesis. There are two kinds of 

glucagon receptors, GR-1 and GR-2. The GR-2 receptor, a major hepatic glucagon 

receptor, is a glycoprotein of 63 kDa containing both the glucagon-binding function and 

the ability to interact with a heterotrimeric G-protein, Gs (Bonnevie and Tager, 1983). 

This receptor exists in two different functional forms, a high-affinity form that 

represents 1 % of the glucagon-binding sites and a low-affinity form that comprises 

99% of the molecules. It is likely that the high-affinity GR-2 receptor mediates the 

inhibitory effect of glucagon upon hepatic glycogen formation. 

Glucagon binds to GR-2 receptors, couples to Gj, then activates adenylyl cyclase 

to increase cAMP formation (Rodbell, 1983). cAMP activates cAMP-dependent protein 

kinase (PKA), leading to the activation of phosphorylase b kinase. This enzyme, then 

phosphorylates phosphorylase b to the active from, phosphorylase a (a rate-limiting 

enzyme of glycogenolysis), resulting in an increase in liver glycogenolysis {Fig. 5). At 

the same time, phosphorylation of active glycogen synthase-a inactivates 

phosphorylase a to the b form, thereby attenuating glycogen formation (Stalmans, 

1983). 

Activated PKA also mediates hepatic gluconeogenesis, ketogenesis and lipolysis 

by increasing phosphorylation of fructose-2,6 bisphosphatase (FBPase-2) and degrading 

fructose-2,6-bisphosphate (F-2,6-P2) to fructose-6-phosphate (F-6-P), thus reducing 

glycolysis and promoting gluconeogenesis. For ketogenic and antilipogenic actions of 

glucagon, the decrease of F-2,6-P2 reduces glucose-derived fatty acid synthesis. 

Glucagon decreases Malonyl-CoA levels, the first product in the lipogenic pathway, by 

inhibiting both glycolysis and acetyl-CoA carboxylase through phosphorylation process 

(McGarry et al., 1978). Malonyl-CoA inhibits carnitine paimitoyi transferase-1 (CPT-1), 

the enzyme that transesterifies fatty acyl CoA to fatty acyl carnitine, and the carnitine 

enters the mitochondria, which is the site of fatty acid oxidation to ketones. To 

summarize, glucagon causes an increase in intrahepatic levels of fatty acyl CoA and 

carnitine, which coupled with activation of CPT-1, resulting in an increase in 

ketogenesis (Fig. 5). 



www.manaraa.com

9 

The GR-1 receptor is the second glucagon receptor that has been found to 

mediate the effect of glucagon through the cAMP-independent pathway (Wakelam et 

al., 1986). Glucagon binds to GR-1 receptor, activates PLC, thus enhancing inositol 

phospholipid breakdown to generate inositol-1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG). IP3 increases Ca^"^ release from the endoplasmic reticulum (ER) and DAG 

activates protein kinase C (PKC); however, it remains unknown as to which proteins are 

phosphorylated by the activation of PKC. It now appears that glucagon acts via both 

cAMP-mediated and IP3-mediated pathways to induce glycogenolysis, glyconeogenesis 

and ketogenesis. 

Glucose 

Glucagon 
i 

t cAlfp 
L_ 

' phosphofylotion of' 
phosphorylose b, 
glycogen synlhose o 

f GLYCOGENOLYSIS 
i GLYCOGENESIS 

.f^cAM^DEPENDEfff^ 
\^PROTEIN KINAS^ 

© phosphorylation of. 
F-6-P,2-kinQ»e-F-2,6-PQ»e 

<1 .ipoaenesisZ^^ ^ 

Fatty Acyl CoA 
• 

t GLUCONEOGENESIS 
» GLYCOLYSIS-. 

tCPT^ 
fRMTONTS 

Increase in non-esterified 
fatty acid 

FATTY ACI 
OXIDATX) 

tKETDfCa 

Increase in Ketones 

Glucose =• 

Fig, 5. A panoramic perspective of the major sites of gluacgon actions at the 

hepatocyte. CPT-Carnitine palmitoyi transferase-1 (modified from Steiner et al., 1995). 

Regulation of glucagon release 

Glucagon is one of the regulatory hormones for glucose homeostasis that causes 

hyperglycemia. The release of glucagon from the pancreatic a cells can be inhibited or 

stimulated by a variety of nutrients and hormones, which are summarized in Table 1. 
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Table 1. Factors affecting glucagon release (modified from Ganong, 1995) 

Stimulators Inhibitors 

Amino acids (particularly the glucogenic Glucose 

amino acids: arginine, alanine, serine. Somatostatin 

glycine, cysteine and threonine) Insulin 

Cholecystokinin (CCK), gastrin, secretin Free fatty acid (FFA) 

Cortisol Ketones 

Stresses (Exercise and infections) y-aminobutyric acid (GABA) 

a2-Adrenergic stimulators Phenytoin 

p-Adrenergic stimulators 

Acetylcholine 

Theophyllline 

Inhibitors of glucagon release 

It is well established that glucose is the major nutrient to inhibit glucagon release 

{Gerich, 1983); however, its effects on the a cells are mediated both directly and via 

glucose-stimulated insulin release. The relative importance of glucose versus insulin in 

suppressing glucagon release has been debated because glucagon secretion by isolated 

a-cells is suppressed in vitro in the total absence of insulin (Weir and Bonner-Weir, 

1990). However, glucagon released from the a-cells that do not contact the p-cells, 

such as dog gastric a-cells (Blazquez et al., 1976), glucagonomas, or islets following p-

cells destruction (Muller et al., 1971), appears not to be inhibited by an increase in 

glucose concentration, but it is inhibited by insulin. The mechanisms underlying insulin-

inhibited glucagon release are unknown. Although no insulin-binding sites are identified 

in pancreatic a cells (Schravendijk et al., 1985), insulin receptors are found in 

glucagonoma ln-R1-G9 cells (Fehmann et al., 1994 and Kisanuki et al., 1995). In 

addition, the arterial infusion of insulin suppresses and anti-insulin antibodies increase 

glucagon release from the isolated islets (Samols, 1988). Insulin also inhibits glucagon 

release and proglucagon gene expression via an inhibition of the proglucagon gene 

transcription (Fehmann et al., 1994). 
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Glucose uptake into the pancreatic a cells is not stimulated by insulin and the 

rate of glucose metabolism in these ceils is ~ 15-20% of that in the P cells (Gorus et 

al,, 1984). Generally, the inhibitory effect of glucose is shared by other glucose 

metabolites and related sugar and its capacity is determined by the ability of the cells to 

metabolize the sugar, suggesting that the effect of glucose is mediated by its 

metabolites. Thus, the inhibitors of cellular metabolism, such as 2,4-dinitrophenol 

(Gerich, 1983) or anoxia (Narimiya et al., 1982) can counteract the glucose-induced 

inhibition of glucagon release. Glucose inhibits glucagon release by stimulating the 

mobilization of Ca^^ from the cytosol, leading to a decrease in [Ca^^], (Johasson, et al., 

1987; Johasson, et al., 1989). it also inhibits amino acid-induced glucagon release 

(Pipeleers, 1985). 

The pancreatic p cells contains the inhibitory neurotransmitter y-aminobutyric 

acid (GABA) and there is evidence that glucose concomitantly increases the release of 

insulin and GABA. GABA activates GABAA receptors in the a cells to inhibit glucagon 

release. The GABAa receptors are CI" channels, which cause CI" influx, resulting in 

hyperpolarization of the a cells. GABA was found to inhibit the effect of arginine-

induced glucagon release and this effect was blocked by the GABAA receptor 

antagonist, bicuculline (Rorsman et al., 1 989). In addition, GABA plays a role in 

glucose-induced inhibition of glucagon release. The inhibitory effect of glucose is 

attenuated when GABAA-activated CI" receptors are blocked by bicuculline (Rorsman et 

al., 1989). The interrelationship between glucose, insulin and GABA on the regulation 

of glucagon release is shown in Fig. 6. 

Somatostatin is known to inhibit both glucagon and insulin releases. It is 

secreted from the pancreatic 5 cells as two peptides; one consists of 28 amino acids 

(S28) and the other consists of 14 amino acids (SI4) (Efendic, 1980). The mechanism 

underlying the effect of somatostatin is unknown. However, two possible mechanisms 

have been proposed: 1) interference with second messenger system or the exocytotic 

machinery of the a cells; 2) alterations of membrane ion conductances. 

FFA and ketone also inhibit glucagon release. However, the inhibition by FFA 

and ketone may not be obvious because plasma glucagon levels are high in diabetic 

ketoacidosis. 
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Insulin granules Arginine Glucagon granules 

Ca 

cr 

B-cell Metabolism GABA 

Glucose 

A-cell 

Fig. 6. A model for the regulation of glucagon release. An increase in glucose 

concentration leads to stimulation of insulin and GABA release from the p cells. GABA 

binds to GABAa receptors on the a ceils and opens CI" channels, leading to membrane 

hyperpolarization and inactivation of Ca^"^ channels. This results in a reduction of 

[Ca^"^]! and glucagon release (modified from Rorsman et al., 1991). 

Stimulators of glucagon release 

Glucagon release is increased by the activation of the sympathetic nerve 

supply to the pancreas. This sympathetic effect is mediated through p- and a.2-

adrenergic receptors, and cyclic AMP (cAMP). Hormones that are secreted during 

stress, such as epinephrine, norepinephrine, growth hormone, p-endorphin, vasopressin 

and Cortisol stimulate glucagon release. Catecholamines play a role in metabolic 

adjustments by directly increasing liver glycogenenolysis via a,- and Pz-adrenergic 
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effects on the liver. They also indirectly enhance glucose production by stimulating 

glucagon release and simultaneously inhibiting insulin release. The net result is to 

enhance glucose flow from hepatic glycogen stores to non-insulin-requiring tissue, such 

as the brain, which is called as "stress hyperglycemia". Stress hyperglycemia serves as 

a vital survival function of glucagon by maximizing glucose delivery to the brain during 

a stress or shock. 

Exercise increases glucagon release via impulses from the ventromedial nucleus 

of the hypothalamus through autonomic fibers that innervate the islets. In addition to 

the signal from hypothalamus, the pancreatic a cells may be locally regulated by 

adrenergic innervation because the a-adrenergic receptor antagonists block the 

response of glucagon release to glucopenia. The release of norepinephrine during 

hypoxia may be a local manifestation in autonomic nerve endings near islets. 

Acetylcholine stimulates both glucagon and insulin release. 

The ingestion of protein such as beef, casein, and amino acids, or fat meal 

stimulates glucagon release, but has only little impact on insulin release. However, a 

carbohydrate-rich meal stimulates insulin release, but has slight impact on glucagon 

release. Hormones that are released during the protein meal, for example gastrin, 

cholecystokinin (CCK) and gastric inhibitory polypeptide (GIP) stimulate glucagon 

release. In addition, vasoactive intestinal polypeptide (VIP) and secretin stimulate 

glucagon release (Ahren, 1991). Accumulation of cAMP in the islet has been observed 

in parallel with an increase in glucagon release after treating isolated mouse pancreatic 

islets with secretin, suggesting that it may increase glucagon release through the 

activation of adenylyl cyclase (Kofold et al., 1991). The mechanisms underlying other 

Gl hormones-induced glucagon release remain unknown. 

The amino acids arginine, glutamine and alanine stimulate glucagon release 

(Pipeleers et al., 1985). Arginine is the most potent amino acid that induces glucagon 

release. Other amino acids have either no, or only slight, stimulatory action on their 

own, but they can potentiate the effect of another amino acid-induced glucagon 

release. Arginine is a cationic amino acid that can depolarize the membrane of the a 

cells by its electrogenic entry (Rorsman and Hellman, 1988). 
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The role of Ca^'^ and the a cell electrical activity 

It is now generally accepted that Ca^"^ is a signal to initiate glucagon release. 

The observations that support this concept are as follows: 1) Physiological 

secretagogues-induced glucagon release is dependent on the presence of extracellular 

Ca^^ (Pipeleers et al., 1985); 2) Ca^'*' ionophore A23187 stimulates glucagon release 

(Hii and Howell, 1986); 3) Glucose-induced inhibition of glucagon release involves 

reduction of uptake in islets from streptozotocin-treated guinea pigs {Berggren et 

al., 1979); 4) In permeabilized rat pancreatic islet ceils, glucagon release increases are 

parallel to the Ca^^ concentrations (Niki et al., 1986); 5) microfluorometric 

measurements using fura-2 demonstrate that stimulations of glucagon release are 

associated with increases in [Ca^"^], (Johansson, et a!., 1989). 

Patch clamp experiments have demonstrated that the pancreatic a cells produce 

a spontaneous action potential, which is initiated from a membrane potential of about -

65 mV and peak at +20 mV. From voltage-clamp measurements, a cells have been 

found to be equipped with voltage-dependent Na^, Ca^* and K"^ channels. Activation 

of inward Na"^ and Ca^^ currents is responsible for the depolarization of the plasma 

membrane, whereas activation of outward current is responsible for the 

repolarization (Rorsman and Hellman, 1988). In addition, L and T types of voltage-

dependent Ca^^ channels have been found to be present in the a cells (Rorsman, 

1988). The activation of T-type channels can be elicited at membrane potentials as 

negative as -60 mV, whereas the opening of L-type channels requires more positive 

voltages. This suggests the different roles of these two channels in the a cells. The L-

type Ca^^ channel opens at the rapid rising phase of action potential and it is likely to 

participate in this process. The T-type Ca^"^ currents occur at the membrane potentials 

close to the threshold for initiation of action potential and may play a role in the 

pacemaking of the a cells (Rorsman and Hellman, 1988). 
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Regulation of glucagon release by arginine vasopressin and oxytocin 

Chemistry and biosynthesis of arginine vasopressin and oxytocin 

Vasopressin (VP) and oxytocin (OT) are nonapeptides with closely related 

structure. There are a number of VP and OT-like peptides occurring naturally in 

different species. All of them contain cysteine residues in positions 1 and 6 and have a 

disulfide bridge between the two cysteine residues, which Is essential for agonist 

activity. In addition, they have conserved amino acids in positions 5, 7 and 9 that are 

asparagine, proline and glycine, respectively (Table 2). In all mammals except swine, 

these peptides contain arginine in position 8 and thus the terms vasopressin, arginine 

vasopressin (AVP) and antidiuretic hormone (ADH) are used interchangeably. In swine, 

the arginine residue in position 8 is replaced with the lysine residue; thus it is called as 

lysine vasopressin (LVP; Table 2). OT differs from AVP in possessing an isoleucine and 

a leucine at the 3 and 8 positions, respectively (Table 2). 

Table 2. Primary structure of the vertebrate vasopressin and oxyotcin (modified from 

Hadley, 1992). 

Hormone Positions of amino acid residues Animal group 

1 2 3 4 5 A 7 S 9 

Ancestral molecule Cys-Tyr-X-X-Asn-Cys-Pro-X-Gly-(NH2) 

1 2 3 4 5 6 7 K 9 

Oxytocin 
1 I 

Cys-Tyr-Ile-GIn-Asn-Cys-Pro-Leu-GIy-(NH2) 
1 2  3  4 5 f i 7 « 9  

Mammals 

Arginine 
vasopressin 

1 1 
Cys-Tyr-Phe-GIn-Asn-Cys-Pro-Arg-Gly-(NH2) 

12 3 4 5 6 7 8 9 

Mammals except domestic pigs 
and Macropt^idae 

Lysine vasopressin 
(Lysipressin) 

1 1 
Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Lys-Gly-(NH2) Placental mammals (Suidae) 

Marsupials (Macropodidae, 
Didelphidae) 
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AVP and OT are synthesized in the perilcarya of magnocellular neurons in the 

supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of the hypothalamus. 

Each nucleus synthesizes both hormones (Dierickx et a!., 1978), with some differential 

distribution within the nuclei; for example, there are more AVP cells in the caudal part 

and more OT cells in the rostral part of both SON and PVN (Swaab et a!., 1975). AVP, 

a product of a preprohormone with 168 amino acids, (Fig. 7A) is synthesized and 

incorporated into ribosome. During synthesis, a signal peptide (residues -23 to -1) is 

removed to form pro-VP, then it is translocated through the rough endoplasmic 

reticulum, consequently incorporated into large membrane-enclosed granules. The 

prohormone consists of three domains: VP (residues 1-9), VP-neurophysin or 

neurophysin II (residues 13-105) and VP-glycopeptide or copeptin (residues 107-145). 

In the secretory granules, the prohormone will be cleaved sequentially by 

endopeptidase, exopeptidase, monooxygenase and lyase to form VP. 

OT is also formed by the processing of a precursor molecule (Fig. 7B) that 

contains OT-neurophysin, a specific binding protein for the hormone. The precursors 

are packed into the granules and processed into the secretory products within the 

granules. OT-neurophysin and VP-neurophysin contain a sequence of more than 90 

amino acids that is identical (Land et al., 1983). AVP, OT and their own neurophysins 

are stored separately as the neurosecretory granules and move along the axon toward 

the terminals in the posterior pituitary (Russel et al., 1990). 

The principal physiological stimuli of AVP release are an increase in plasma 

osmolality, hypovolemia/hypotension, pain, nausea, hypoxia, and some agents such as 

acetylcholine, histamine, dopamine, glutamine, cholecystokinin, and angiotensin II. 

About 2% elevation of plasma osmolality causes a two to three-fold increase in plasma 

VP levels. For OT, the sensory stimuli arising from the reproductive tract or mammary 

gland induce OT release from the posterior pituitary gland. 

AVP and OT are present in the extrahypothalamic tissues, such as the adrenal 

gland, cerebellum (Richter et al., 1991), ovary (Guldenaar et al., 1984), thymus 

(Geenan et al., 1986), testis (Guldenaar and Pickering, 1985) and pancreas (Amico et 

al., 1988). 
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(A) 

-23 

AVP PREPROHORMONE (HUMAN) 

2Si\^l-Gly* eaGlj^er* . Mutations leading to diabetes insipidus 

10S 107 145 ° 
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(B) 

Signal peptide-OXYTOCIN-Gly.Lys.Arg-neurophysin-His 

Fig. 7. (A) Processing of tlie 168-amino acid prepro-AVP to AVP, VP-neurophysin and 

VP-glycopeptide (modified from Jackson, 1996) and (B) the oxytocin precursor 

(modified from Pickering, 1995). 

Actions of AVP and OT 

The major physiological function of AVP is the regulation of body fluid volume, 

osmolality, and maintenance of blood pressure. However, it also affects other systems; 

for example, AVP increases glycogenolysis (Kirk et al., 1979), proliferation of the 

pituitary gland (McNichol et al., 1990), secretion of clotting factors (Fuchs and Fuchs, 

1984; Gibbens and Chard, 1976), ACTH (Fuchs and Fuchs, 1984), catecholamines 
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(Grazzini et al., 1996), glucagon, and insulin (Dunning et al., 1984), AVP increases the 

permeability to water of the collecting tubules, allowing water to move along the 

gradient from lumen to renal medulla, resulting in urinary concentration (Bankir, 1991). 

OT plays a major role in the regulation of milk ejection and uterine contraction; 

however, it also increases ACTH (Schlosser et al., 1994), glucagon and insulin release 

(Dunning et al., 1984). OT contracts or relaxes vascular smooth muscle depending on 

species, vascular bed, and region within the vascular bed (Rouille et al., 1991). In 

addition, both AVP and OT are involved in central processes of higher cognitive 

function such as memory and learning (Barberis and Tribollet, 1996). 

>4 VP and OT receptors 

The classification of AVP and OT receptors is based upon both the second 

messenger system coupled to the receptors and the affinity of various AVP and OT 

analogues to a certain receptor type. The effects of AVP are mediated by two principal 

types of receptors, V, and V2 receptors (Guillon et al., 1980). The V, receptors have 

been further subclassified into Vig and Vib receptors because the binding properties of 

the Vib to various vasopressin agonists and antagonists differ from those of Via 

receptors (Schwartz et al., 1991). The Vi^ receptor, the most widespread subtype of 

AVP receptors, has been found in vascular smooth muscle, myometrium, the bladder, 

adipocytes, hepatocytes, platelets, renal medullary interstitial cells, vasa recta in the 

renal microcirculation, epithelial cells in the renal cortical collecting duct, spleen, testis, 

and many CNS structures (Jackson, 1996). The Vib receptor is primarily located in the 

adenohypophysis. However, Vib receptor mRNA has been detected in peripheral 

tissues (kidney, thymus, heart, lung, spleen, uterus and breast) and some areas of the 

brain in the rat (Lolait et al., 1995) as well as in the pancreas (Saito et al., 1995). In 

addition, this receptor subtype has been pharmacologically characterized in the rat 

adrenal medulla (Grazzini et al., 1996), rabbit tracheal epithelium (Tamaoki et al., 1998) 

and rat pancreas (Lee et al., 1995). These findings suggest that the Vib receptors may 

have additional and unknown functions in the brain and at the periphery. The V2 

receptor is found principally in cells of the renal collecting duct system. OT receptor is 

predominantly located in the uterus and mammary gland. In addition, a high density of 

[^H]oxytocin binding is present in the periphery of rat pancreatic islets suggesting the 
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presence of OT receptors in the pancreas (Stock et al., 1995). The amino acid 

sequences of four different types of AVP and OT receptors have been identified and 

they display a high homology of 102 conserved amino acids among the 370-420 amino 

acids. Both AVP and OT receptors are typical G protein-coupled receptors (GPCR), 

containing seven hydrophobic transmembranes a-helices joined by different intracellular 

N-terminal and extracellular C-terminal domains (Fig. 8). The ligand or agonist binding 

site is predicted to appear in a pocket formed by the seven transmembrane domains 

(Mouillac et a!., 1995). The V, (Mitchell et al., 1979) and OT receptors are coupled to 

Gq/11 to activate phospholipase C (Marc et al., 1986), whereas the V2 receptor is 

coupled to Gs to activate adenylyl cyclase, leading to generation of cAMP (Thibonnier, 

1992). The third intracellular loop of the V2 receptor is responsible for recognition and 

activation of Gj, and the second intracellular loop of V, receptor plays a key role in the 

selective activation of Gq/,, (Barberis et al., 1998). 

High concentration of immunoreactive AVP and OT (0.9 ng/g wet weight to 3.7 

ng/g wet weight tissues) are present in human and rat pancreata (Amico et al., 1988). 

Since this range of concentrations of AVP and OT in the pancreas is much higher than 

the one from the neurohypophysis that reaches the pancreas (3-25 pM; Franchini et al, 

1996 and Kjaer et al., 1995)) via the circulation, the pancreas may be a site of local 

synthesis of both AVP and OT (Amico et al., 1988). Administration of OT increases 

plasma glucagon and insulin levels in normal dogs (Altszuler and Hampshire, 1981). A 

rise in the plasma glucagon level was found to be mediated by the increases in AVP 

and OT in rats subjected to hemorrhage (Dunning et al., 1985). OT and AVP (20 

pg/ml) increase glucagon release from in situ perfusion of rat pancreas (Dunning et al., 

1984). These findings suggest a paracrine function of AVP and OT in the induction of 

glucagon release. 

Receptor antagonists 

Shortly after the structure of AVP was synthesized, du Vigneaud et al. (1954), 

started to designate antagonists against AVP's pharmacological effects. Since that 

time, a number of highly selective Vi^, Vj and OT receptor antagonists have been 

synthesized (Manning et al., 1993; Laszl6 et al., 1991 and Williams et al., 1992), 

including both cyclic and linear peptides. [1-(/?-mercapto-;0,;0-
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cyclopentamethyleneproprionic acid),2-0-methyltyrosine]AVP, also known as 

d(CH2)5lTyr(Me)^]AVP (pAa = 8.62; Fig. 9 A; Manning and Sawyer, 1989) and 

desGly®d(CH2)5[Tyr(Et)^]AVP {WK-3-6) (pAj = 8.17; Jard et al., 1992) are more potent 

antagonists for Via receptors than for either Vn, or Vj receptors. These antagonists 

have been widely used in physiological and pharmacological studies. 

®®®©®©©®®©©®(D©®®-NH2 

Cell Membrane 

Fig. 8. Transmembrane topology of the human vasopressin Vi^ receptor. Black-circled 

amino acids indicate the residues that are involved in the agonist binding. The amino 

acid presented in triangle (F) is possibly involved in the antagonist binding (modified 

from Barberis et al., 1998). 
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Although [1-deaminopenicillamine, 2-0-methyltyrosine]AVP, also known as 

dP[Tyr{Me)^]AVP, is a potent Vit receptor antagonist (pAa = 7.98; Fig. 9 B; Manning 

and Sawyer, 1989) with a low affinity for the V2 receptors, it also blocks Via receptors 

(Schlosser et al. 1994). 

4-OH-phenacetyl-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-NH2 (CL-4-84) is a linear 

AVP antagonist that has a high affinity for receptor (K, = 2.2 ± 0.1 nM; Thibonnier 

et al., 1997). However, it is also a potent antivasopressor (pAj = 8.74 and K, = 0.45 

± 0.04 nM; Jard et al., 1986; Thibonnier et al., 1997). Unfortunately, there is no truly 

selective Vib receptor antagonist currently available. 

d(CH2)5[D-Phe^, {ie^]-AVP (AO-2-44) is a potent Vz/V-ig/V-i^ receptor antagonist 

(Jard et al., 1986). Its PA2 values are 7.83 and 8.16 for anti-Via and anti-Va, 

respectively. It is about 350 times more potent for binding V,,, receptors than WK-3-6 

(Jard et al., 1986). 

A number of structurally novel hexapeptides have been characterized as potent 

and selective antagonists for OT receptors. Cyclo-(L-Pro-D-2-naphthyl-Ala-L-lle-D-

pipecolic acid-L-pipecolic acid-D-His) (L-366,948; Fig. 9 C), as a representative of this 

class of compounds, exhibits a high binding affinity for OT receptors in rat uterus (Kj = 

0.7 ± 0.21 nM) and mammary tissue (K, = 0.8 ± 0.11 nM) with a much lower affinity 

against Via (Ki = 760 ± 100 nM) and V2 (K, = 320 ± 25 nM) receptors in the rat 

(Pettibone et al., 1991). It is a pure and highly potent OT antagonist that blocks both 

OT-stimulated uterine contraction (PAj = 8.53 ± 0.08) and phophatidylinositol turnover 

in uterine slices (Pettibone et al., 1991). 

Signal transduction pathway of V, receptors 

The signal transduction pathway of AVP has been investigated in various 

tissues, including smooth muscle, endothelium and endocrine cells (Spatz et al., 1994). 

AVP- and OT-induced ACTH release from the pituitary (Anton! et al., 1984 and 

Schosser et al., 1994) and insulin release from the rat pancreas and clonal p-cell lines 

RINm5F (Lee et al., 1995) and HIT (Richardson et al., 1990) are mediated by Vib 

receptors. Generally, AVP binds to V, receptors coupled to a pertussis toxin (PTX)-

insensitive G-protein, probably G,, which activates phospholipase C-p (PLC-P) 
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(Thibonnier et al., 1993). Activation of PLC is responsible for the hydrolysis of 

phosphatidylinositol-4, 5-bisphosphate (PIP2), resulting in the generation of IP3 and 

DAG. IP3 stinnulates the release of from the ER into the cytosol via activation of 

IP3 receptor {IP3R )/ channel (Berridge, 1993). Molecular structure of the IP3R 

shows that this receptor consists of IP3 binding, coupling and Ca^"^ channel domains. 

When IP3 binds to its binding domain, leading to a conformational change of the 

coupling domain, which, in turn, induces Ca^^ channel opening (Mignery and Sudhof, 

1990). The mechanisms underlying the receptor-activated sustained Ca^"^ influx are 

not yet clear, however, there is a well-established hypothesis indicating that Ca^^ 

release activates influx through channels on the plasma membrane (Petersen 

and Maruyama, 1983; Putney, 1990; von Tscharner et al., 1986). binds to and 

activates a number of intracellular proteins, including calmodulin that contribute to the 

ultimate cellular responses, including insulin and/or glucagon release. DAG activates 

PKC, leading to phosphorylation of key proteins that contribute to the cellular response 

(Fig. 10). In addition, V, receptors can also couple to other effectors, such as 

phospholipase D (PLD) and phospholipase A2 (PLA2). Activation of PLD evokes the 

hydrolysis of phospholipid to form phosphatidic acid (PA), which is further metabolized 

to DAG that activates PKC, Activation of PLA2 generates arachidonic acid (AA) from 

the membrane phospholipid, and AA is metabolized to prostaglandin and 

epoxyeicosatrienoic acids, which modulate various cellular responses (Jackson, 1996). 

AVP stimulates insulin release via the activation of both PLC-dependent and -

independent pathways (Chen et al., 1994; Li et al., 1992; Richardson et al., 1990). 

However, in the pancreatic a cells, the mechanism underlying AVP-induced glucagon 

release has never been established. Therefore, this leads us to study the mechanisms 

involving the effects of AVP on both the [Ca^^], increase and glucagon release. 

G-protein 

G-proteins are located predominantly at the intracellular face of the plasma 

membrane, where they can interact with both receptors (upstream components) and 

effectors (downstream components) of the different signaling systems. They are 

trimeric molecules, consisting of a, p and y subunits and they accomplish their job by a 

cycle of nucleotide exchange and GTP hydrolysis upon subunit dissociation and 
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reassociation. Tfie P- and y-subunits associate tightly as a complex. The a-subunit has 

a high affinity biding-site for guanine nucleotides (GDP and GTP). The Ga-subunit 

serves as a regulator of effector proteins by which its inactive form (GDP-bound) binds 

tightly to the Py complex, whereas the active form of the Ga-subunit (GTP-bound) 

dissociates from the Py. The Ga-subunit, itself is an enzyme that possesses intrinsic 

GTPase activity and hydrolyzes GTP to form GDP (Fig. 11). 

CH,-CO-Tyr(He)-Phe-Cln-Asn-Cy-Pro-Ar9-ClyNH. 
3 5 6 8 9 1  2  3 4 5 6 7 0 9  

CH,-CO-T»rtHe)Phe-Cln Asn-Cy Pro-Arg-GlyNM, 

A) d(CH2)5[Tyr(Me)2]AVP B) dP[Tyr(Me)2]AVP 

C) L-366,948; position: 1) L-pro; 2) D-2-Napthylalanine 

3) L-lle; 4) D-pipecolic acid 

5) L- pipecolic acid; 6) D-His 

Fig. 9. Structures of AVP receptor antagonists A) d(CH2)5[Tyr(Me)^]AVP; b) 

dP[Tyr(Me)^]AVP (modified from Manning and Sawyer, 1989) and that of OT receptor 

antagonist C) L-366,948 (modified from Pettibone et al., 1991). 
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Fig. 10. Mechanisms of V, receptor-effector coupling. V,, V, vasopressin receptor; 

AVP, arginine vasopressin; a^, p, y, subuits of G protein; PLD, phospholipase D; PLC-p, 

phospholipase C-p; PLAz, phospholipase Aj; DAG, 1,2-diacylglycerol; ER, endoplasmic 

reticulum; PKC, protein kinase C; PIP2, phosphatidylinositol-4,5-bisphosphate; IP3, 

inositol-1,4,5-trisphosphate; PA, phosphatidic acid; PPH, phosphatidate 

phosphohydrolase; PC, phosphatidylcholine; AA, arachidonic acid; PGs, prostaglandins; 

EPs, epoxyeicosatrienoic acids; CO, cyclooxygenase; EPO, epoxygenase; AP-1, 

transcription factor consisting of heterodimer of FOS and JUN) c-fos and c-Jun are 

proto-oncogenes; FOS and JUN are products of the c-fos and c-jun gene expressions, 

respectively (modified from Jackson, 1996). 
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The G-proteins are classified based on the identity of Ga subunits into four major 

subfamilies; Gg, Gi/o, G,, and G12. Chorela toxin (CTX) from Vibrio cholerae catalyzes 

the ADP-ribosylation of a conserved arginine residue at position 202 of the Ga subunit 

in the Gj family, which results in the inhibition of GTPase activity and the interaction 

with the Py subunit (Serventi et al., 1992). PTX from Bordetella pertussis catalyzes the 

ADP-ribosylation of a cystein residue at position 4 from the C-terminus of Ga subunits 

in the Gj/o family, resulting in the inhibition of receptor-G protein coupling. G, and 0,2 

lack of the cystein residue that can undergo ADP-ribosylation by PTX, and thus are 

referred to as PTX-insensitive G-proteins (Strathmann and Simon, 1990). Generally, G, 

couples to PLC-P (Taylor et al., 1991). 

Fig. 11. The G-protein-mediated transmembrane signaling (modified from Hepler and 

Gilman, 1992). 
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Involvement of phospholipases in the mechanism of AVP 

PhosphoHpase C 

Phosphoinositides (PPI) or inositol lipids consist of a glycerol backbone 

containing 2 fatty acyl groups (at 1- and 2-positions) and a phosphate group coupled to 

the sugar m/o-inositol at the 3-position. Phosphorylation of phosphatidylinositol (PI) to 

phosphatidylinositol 4-mono phosphate (PIP) and then to phosphatidylinositol 4,5-

bisphosphate {PIP2I occurs predominantly in the plasma membrane. The PiPz is the 

primary hydrolyzed product of PPI, that usually serves as a primary substrate in cells for 

the second messenger generation. PLC is a family of isozymes that hydrolyzes 

phospholipids at the 3-position of phosphodiester bond of glycerol backbone. PLC 

hydrolyzes PIP2 to generate IP3 and DAG. 

PPI-specific PLC (PPi-PLC) is a subfamily of PLC that specifically hydrolyzes only 

Inositoi-containing lipids, but not other phospholipids, such as phosphatidylcholine (PC). 

PPI-PLC has been classified into three classes; PPI-PLC-p, -y, and -5. They are distinct 

proteins that contain only a small amount of sequence identity (Rhee and Choi, 1992). 

PPl-PLC-p has been further classified into two subtypes; pi and pil, which exhibit a high 

degree of sequence identity. 

All PPI-PLC isozymes catalyze the hydrolysis of PI, PIP, and PIP2 in vitro; 

however, only PIP2 is the substrate in vivo. Both PPI-PLC-p and PPI-PLC-y isozymes are 

involved in receptor-activated PIP2 hydrolysis in the cells; however, the mechanisms of 

their activations are different due to a difference in the primary amino acid sequence, 

PPI-PLC-y contains src homology (SH2 and SH3) domains, which are found to mediate 

the binding to other proteins that contain phosphorylated tyrosine residues such as 

growth factor receptors, but PPI-PLC-p does not. Activation of PPI-PLC-p is mediated by 

the G(,-coupled signal transduction (Taylor et al,, 1991), whereas PPI-PLC-y is activated 

by the agonist-occupied receptors that possess intrinsic tyrosine kinase activity (Ullrich 

and Schlessinger, 1990). 

Stimulation of PIP2 hydrolysis leads to IP3 formation that causes an elevation of 

[Ca^"*^]i. In P-cells, AVP increases insulin release by promoting the formation of IP3 (Li et 
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al., 1992); however, whether AVP induces glucagon release through the same 

mechanism as that of insulin release remains to be determined. 

Calcium signaling 

Regulated in [Ca^^], have been found to mediate exocytosis in both pancreatic a 

and P cells (Bode et al, 1994; Li et al., 1992 and Woilheim and Pozzan, 1984). The 

[Ca^"^]! in unstimulated cells is about 100 nM, which is approximately 10,000 fold 

lower than the extracellular Ca^^ concentration. The low [Ca^"^], is maintained by a 

variety of cellular processes. The major barrier is the surface membrane which is highly 

impermeable to Ca^^. In unstimulated cells, Ca^^ channels in the plasma membrane are 

inactive or closed. 

in a glucagon secreting cell line, ln-R1-G9, the Ca^^ channels can exhibit 

spontaneously brief activation (Ca^^ spikes) that permits significant basal Ca^"^ influx 

and leads to glucagon release (Bode et al., 1994). In the meantime, these Ca^^ 

channels can be activated or opened to allow a large Ca^"^ influx. In addition to the 

prevention of the Ca^^ influx, the plasma membrane exhibits two energy-dependent 

processes of extrusion of Ca^^ from the cells to limit elevations of [Ca^^]|. These are 

the Ca^'^-Mg^'^ ATPase or plasmalemmal pump and the Na^-Ca^^ exchange 

mechanism, which depends on the Na^ gradient established by Na^-K^ ATPase. Within 

the cell, the ER and mitochondria are the major organelles that contribute to the 

maintenance of a low [Ca^"^]!. The ER has a high affinity, but low capacity for Ca^"^ 

sequestering that plays a role in maintaining [Ca^^li in the nanomolar range, whereas 

the mitochondria are low-affinity, but high-capacity Ca^^-sequestering organelles that 

seem to serve as a protective function against large increases in [Ca^^li. Ca^'*' is 

pumped into the ER by the action of membrane-bound Ca^^-Mg^"^ ATPase, which works 

differently from the one in the plasma membrane. In mitochondria, Ca^^ is sequestered 

based on the mitochondrial proton gradient (Fig. 12). 

Generally, receptor-activated Ca^"^ mobilization via the PPI cascade can involve 

two phases: 1) Ca^^ release from the ER, and 2) a more prolonged phase of 

extracellular Ca^^ entry (Putney, 1987). Therefore, [Ca^"^], can rise either through the 

release of Ca^"^ from the ER or through the entry of extracellular Ca^^ via the plasma 
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Fig. 12. Schematic depiction of a cell illustrating mechanisms of regulation of 

intracellular ionized calcium. ER, endoplasmic reticulum; IP3; inositol 1,4,5 

trisphosphate; VDCC, voltage-dependent Ca^^ channel; ROC, receptor-operated ca^"^ 

channel (modified from Gershengorn and Perlman, 1995). 

membrane. The regulation of Ca^"^ influx is unclear; however, there is evidence 

demonstrating the existence of Ca^^ release-activated Ca^"^ influx or so called 

capacitative Ca^"^ entry mechanism (Petersen and Maruyama, 1983; Putney, 1990; von 

Tscharner et al., 1986). This mechanism indicates that the depletion of intracellular 

Ca^"*" store, resulting from IPg-induced Ca^^ relea.se, evokes Ca^"^ influx through the 
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opening of Ca^"^ channels on the plasma membrane (Ca^^-release activated channels; 

Leung et al., 1996). The most popular strategy to prove this hypothesis is the use of 

drugs such as thapsigargin (TG) (Jackson et al., 1988; Thastrup, 1990), which inhibits 

microsomal (but not plasmalemmal) Ca^'^-ATPase, thereby depleting intracellular Ca^"^ 

stores. TG also activates sustained Ca^"^ entry to the same or greater extent as PLC-

linked agonist. However, subsequent addition of any agonists in the presence of TG 

does not further increase the rate of Ca^^ influx (Takemura et al., 1989). Thus, this 

indicates that depletion of the agonist-sensitive intracellular Ca^"^ stores regulates Ca^"^ 

influx at the plasma membrane. 

The influx of extraceffular Ca^^ appears to be mediated by either the voltage-

dependent Ca^"^ channel (VDCC) or receptor-operated channel (ROC). The three 

major subtypes of VDCCs have been designated as L-type (long-lasting), T-type 

(transient) and N-type (neither long-lasting nor transient) channels. The L- and T-

types VDCCs and ROCs have been reported in the endocrine a cells (Bode et al., 1994; 

Rorsman, 1988). The elevation of [Ca^*"]! leads to an increase in the binding of Ca^"^ to 

a specific regulatory protein, calmodulin (Klee et a!., 1980), which stimulates cellular 

responses and secretion. 

The activation of VDCC is controlled by the change of the plasma membrane 

potential, which can initiate a number of cellular responses, including muscle 

contraction and exocytotic secretion in endocrine and nerve cells. The L-type VDCC is 

characterized by its sensitivity to dihydropyridines (DHP). It is inhibited by the DHP 

antagonist nimodipine and is activated by the DHP agonist Bay K 8644 (Smith et a)., 

1993). DHP has a higher affinity for the channels in inactive states than active or 

resting states. The T-type VDCC, activated at the membrane potential of ~ -50 mV, 

may be important for the pacemaker activity in several tissues. There are no specific 

blockers for the T-type VDCC; however, Ni^^, tetrandine and felodine partially block 

this type of channel. 

The ROCs are activated by agonists that bind to the plasma membrane receptor. 

Their structures and the mechanisms of their activations are not yet well-established. 

The ROCs provide a number of pathways by which Ca^'^can be delivered to the cytosol 

and the ER. Store-operated Ca^^ channels (SOCs) are a major subfamily of ROCs, 

which are activated by a decrease in Ca^^ in the ER. In order to initiate or maintain a 
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specific type of Ca^"^ signal, ROCs, which are non-selective cation channels, can deliver 

Ca^"^ directly to specific regions of the cytosoi. In addition, the opening of ROCs 

increase Na^ influx, which induces depolarization of the plasma membrane, leading to 

the opening of VDCCs and the subsequent inflow of Ca^"^. SOCs deliver Ca^^ 

specifically to the ER, thus maintaining oscillating Ca^"^ signals (Barritt, 1999). ROCs 

can be blocked by an antagonist, SK&F 96365 (1-(beta-[3-{4 methoxyphenyl) 

propoxyl]-4-methoxyphenethyl)-1H-imidazole) (Cabello and Schilling, 1993). 

Phospholipase A 2 

PLA2 is a group of ubiquitous enzymes that exist in many cells and tissues. The 

hydrolysis of cellular phospholipids, such as phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE) by PLAj causes the release of free fatty acids (FFAs), 

arachidonic acid (AA), and lysophospholipids (Fig. 13 A). It hydrolyzes the ester 

linkage of membrane glycerophospholipids at the sn-2 position of glycerol moiety. The 

released AA may affect a number of cellular functions, because it activates PKC 

(Nishizuka, 1992) and MAP kinase (Rao et al., 1994), and the concomitant formation of 

lysophosphatidylcholine (lysoPC) may cause damages to cellular membranes (Weltzien, 

1979). AA and lysoPC are metabolized via cyclooxygenase to various protaglandins, 

thromboxanes, and leukotrienes that are called eicosanoids, and to epoxyeicosatrienoic 

acids (EPs) via epoxygenase (EPO) (Needleman et al., 1986). The eicosanoids are pro­

inflammatory mediators, whereas the EPs are the metabolites that mediate vasodilation, 

mitogenesis, platelet aggregation, Ca^"^ signaling and steroidogenesis (Medhora and 

Harder, 1998). In general, the agonists that hydrolyze PC also promote PI hydrolysis in 

their target cells, leading to a biphasic increase in DAG, with a rapid and transient peak 

followed by a prolonged accumulation (Exton, 1990). The first peak is due to PI 

hydrolysis and is associated with increases in IP3 and [Ca^^li. The second peak is due 

to PC hydrolysis and is associated with an increase in choline and choline phosphate (P-

choline) (Fig. 13 B). 

The PLA2 enzymes are classified by the use of functional activities into at least 

four different subfamilies (Kramer and Sharp, 1997). First, secretory PLA2 (sPLAz), with 

a low molecular weight of 14 kDa, is characterized by a catalytic requirement of Ca^"^ 

and a structure that is maintained by disulfide bridges. Three SPLA2 proteins have been 
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Fig. 13. Schematic representation of agonist-induced membrane phospholipid 

degradation (A). Time course of the generation of various signaling molecules (B). 

PIP2, phosphatidylinositol 4,5 bisphosphate; PC, phosphatidylcholine; DAG, diacyl 

glycerol; FFAs, free fatty acids; IP3, inositol 1,4,5 trisphosphate; LysoPC, 

Lysophosphatidylcholine; PKC, protein kinase C; PI, phosphoinositol (modified from 

Nishizuka, 1992) 
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purified and characterized as group I, II and III (Glaser et al., 1993; Dennis, 1994). 

sPLAa enzymes are usually secreted from cells and are found in snake and bee venoms, 

synovial fluid and pancreatic secretion. They have been associated with several toxics 

(e.g. neurotoxicity, myotoxicity, etc.). pathological (e.g. inflammation, hypersensitivity), 

or physiological (e.g. contraction, proliferation) processes (Lambeau et al., 1994). 

However, they are believed not to be involved in cell signaling. Second, Ca^'^-sensitive 

cytosolic PLAj (cPLAj) with a molecular weight of 85 kDa has been purified, cloned and 

biochemically characterized (Clark et al., 1995). cPLAj is the only known PLAa that is 

involved in the receptor-mediated eicosanoid production and intracellular signal 

transduction processes (Kramer et al., 1997). It is activated by an increase in [Ca^"^]! 

and phosphorylation of MAP kinase. Increased [Ca^"*"], causes translocation of cPLAa 

from the cytosol to the plasma membrane (Clark et al., 1995). Third, a variety of ATP-

sensitive Ca^^-independent cytosolic PLA2 (ASCI-PLA2), with molecular weights ranging 

from 29 to 85 kDa have been purified from different tissues. Based on the primary 

structure of the ASCI-PLA2 derived from Chinese hamster ovary cell (CHO), it is 

noteworthy that it has no structural relationship to cPLAz (Tung et al., 1997). Fourth, 

the platelet-activating factor acetylhydrolase or lipoprotein-associated PLA2 is bound to 

lipoproteins in the plasma membrane and it is independent of Ca^^ (Stafforini et al., 

1996). The remarkable difference of this PLA2 from others is its specificity for short 

and/or oxidized acyl groups at s/i-2 position of phospholipids. 

At least three different kinds of PLA2 are expressed in the pancreatic (3-cells, 

such as low molecular weight SPLA2, CPLA2, and ASCI-PLA2 (Ma et al., 1998). PLA2, 

such as ASCI-PLA2 and CPLA2 are found to mediate the insulin secretion in pancreatic 

islets and clonal (3-cells (Parker et al., 1996; Ramanadham et al., 1994). In addition, 

the PLA2 enzymes are found to be involved in AVP-induced signal transduction (Spatz 

et al., 1994; Loxley, et al., 1993); however, whether the AVP-activated PLA2 pathway 

is involved in the regulation of glucagon release from the pancreatic a-cells remains to 

be determined. 
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PhosphoHpase D 

PLD is an enzyme tliat was first discovered in plants by Hanahan and Chaikoff in 

1948. (n 1975, Saito and Kanfer reported the appearance of PLD in mammals, and 

since that time, this enzyme has been shown to exist in most mammalian tissues. It 

catalyzes the hydrolysis of glycerophospholipids at their distal phosphodiester bond to 

generate phosphatidic acid (PA) and the corresponding free polar head group. 

Although, PE (Kiss and Anderson, 1989) and PI (Balsinde et al., 1989) have also been 

reported to be substrates for PLD in some systems, PC is the preferred substrate in 

most systems (Lambeth, 1993). 

PLD activation can be initiated by a number of stimuli, such as hormones, 

peptides, cytokines, oxidants, neurotransmitters, and growth factors in a variety of 

mammalian systems (Boarder, 1994). Activation of PLD results in the transient 

generation of PA, which is further metabolized to lysophosphatidic acid (lyso PA) and 

DAG. The PA, lyso PA, and DAG have been recognized as the intracellular second 

messengers and have been found to activate PKC (Fig. 14) (Ando et al., 1989; Dunlop 

and Larkins, 1985). PLD also catalyzes a transphosphatidylation reaction, in which a 

primary alcohol serves as the phosphatidyl group acceptor. This reaction exchanges 

the polar head group of phospholipid substrate with the primary alcohol (e.g. ethanol 

and propanol), yielding the phosphatidylalcohoi, which has been considered as a 

specific marker for PLD activity, a valuable tool for PLD research. In fact, 

phosphatidylalcohoi is a more quantitative and less ambiguous marker for PLD activity 

than PA, which can be rapidly metabolized to other products (Fig. 15; Olson and 

Lambeth, 1 996). 

Activation of PLD has been suggested to be either dependent on, or independent 

of Ca^"^. The signal-activated PLD is regulated by several different pathways involving 

G-proteins, hydrolysis of PIP2, DAG, activation of PKC (especially PKC-a and -p) and 

protein tyrosine kinase, stimulation of calmodulin/myosin light chain kinase, and 

changes in [Ca^"^], (Boarder, 1994). In addition, the small molecular weight G-proteins, 

such as ADP-ribosylation factor (ARF), rho and ras can activate PLD (Fig. 14) (Olson 

and Lambeth, 1996). 

Several forms of PLD exist in mammalian cells, such as membrane-associated 

PLD and cytosolic PLD. The cell membranes contain at least two types of PLD: one 
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that acts as an integral membrane protein and is activated by sodium oleate, an 

unsaturated fatty acid, but not by ARF, and a second type that acts as a peripheral 

membrane protein and is activated by ARF, but not by sodium oleate. The sodium 

oleate-activated PLD enzyme exhibits an acidic optimal pH (6.0-6.5) and does not 

require Ca^^ for activation (Balsinde et al., 1989). 
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Fig. 14. Different agonists and pathways that activate phospholipase D signaling in 

mammalian cells. *, Short-term activation initiated by a subunits by either direct or co-

factor-mediated (denoted by "X") activation; **, sustained activation initiated by p/y 

subunits acting through PLCp and followed by the release of downstream signaling 

molecules; IP3, inositol 1,4,5-trisphosphate; PIP2, phosphatidylinositol (4,5)-

bisphosphate; ARF, ADP-ribosylation factor; PKC, protein kinase C; DAG, diacyl 

glycerol; PLA2, phospholipase A2 (modified from Gomez-Cambronero and Keire, 1998) 
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Fig. 15. A schematic representation of phospholipase D activity (modified from Shukia 

and Halenda, 1991) 

The cytosolic PLD is Ca^"^ dependent (Balsinde et al., 1989; Huang et al., 1992), 

which has been identified in many different tissues, such as human neutrophils 

(Balsinde et al., 1989), bovine lung, brain, kidney, spleen, heart and liver (Wang et al, 

1991) and Madin-Darby canine kidney (MDCK) cells (Huang et al., 1992). 

Specific and potent inhibitors for PLD have not yet been identified. A number of 

compounds, for example the PI 3-kinase inhibitor wortmannin and the protease 

inhibitors carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK) and leupeptin, 

have been reported to block PLD activation. The phosphatase inhibitor, 2,3-

diphosphoglycerate appears to be a direct, but not a very potent inhibitor for PLD (K, = 

9 mM; Kanaho et a!., 1993). Another compound that may directly inhibit PLD is 1,2-
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bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), whicli is used as an 

intracellular Ca^^ chelator (Coorsen and Haslam, 1993). In addition, choline, and some 

cation amines, e.g. /V-methylglucamine, ethanolamine and Tris"^, inhibit PLD activation 

in permeabilized macrophages (El-Moatassim and Dubyak, 1993). However, the mode 

of action of these compounds remain unclear; it is likely that some of them block PLD-

upstream events (Liscovitch and Chalifa-Caspi, 1996). 

In 1987, Bocckino et al. demonstrated a direct relationship between PLD and 

AVP, in which AVP increased PA formation that preceded a secondary increase in DAG 

levels, suggesting that AVP can activate PLD. In addition, AVP activates PLD in the rat 

Leydig (Vinggaard and Hansen, 1991) and glomerular mesangial cells (Kusaka, et al., 

1996). Activation of PLD stimulates insulin release from the pancreatic islets (Metz 

and Dunnlop, 1990). However, the role of PLD in AVP-induced glucagon release has 

never been established. 

Involvement of protein kinase C in the mechanism of AVP 

PKC was first discovered and identified by Nishizuka and coworker (1977) as a 

cytosolic, calcium-activated, phospholipid-dependent kinase. It is the enzyme that 

takes part in cellular responses to various agonists, including hormones, 

neurotransmitters and some growth factors. It is activated by an increase in DAG in 

the plasma membrane that results from agonist-induced hydrolysis of PI, PC and PE. 

PKC is a family of serine/threonine-specific protein kinases, consisting of at least 

ten isozymes, that can be classified into three groups: 1) the conventional (cPKCs) a, 

pi, pil, and Y (require negatively charged phospholipids e.g. phosphatidylserine (PS), 

DAG or a phorbol ester, and Ca^^ for optimal activation); 2) the novel (nPKCs) 5, e, 0, 

T|, and (J, (require negatively charged phospholipids, DAG or a phorbol ester, but no Ca^"^ 

for optimal activation); 3) the atypical (aPKCs) X/i (mouse/human) and (require only 

negatively charged phospholipids for activation) (Table 3). 

PKC contains regulatory and catalytic domains, which consist of 4 conserved 

regions (C1-C4) and 5 variable regions (V1-V5). The regulatory domain at the NHz 

terminal, which is involved in the binding of substrates and activators, consists of a 

phorbol ester binding domain (CI), a Ca^^ binding domain (C2), and a pseudosubstrate-
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binding site. The catalytic domain at carboxyi-terminal, which is involved in catalytic 

activity and phosphorylation of substrates, consists of an ATP-binding site (C3), and a 

protein kinase domain (C4), which contains both substrate binding site and the 

phosphoryl transfer region) (Nishizuka, 1988) (Fig. 16). The pseudosubstrate binding 

site in the regulatory domain will bind to a substrate binding site in the catalytic domain 

during the inactive state of the enzyme. Activation of PKC causes a conformational 

change in the enzyme, releasing the pseudosubstrate from the substrate binding site, 

allowing the substrate to bind to the enzyme, which is phosphorylated on serine and 

threonine residues (Fig. 17). 

The isozymes are characterized by differences in the C1-C4 domains {Stabel, 

1994 and Nishizuka, 1995). The Ca^^ binding region (C2) is missing in nPKCs and 

aPKCs. cPKCs and nPKCs consist of two zinc fingers in the phorbol ester binding site 

(CI), whereas aPKCs contains only a single zinc finger in CI. PKCjj. is classified as an 

nPKC, because it is phospholipid-dependent, Ca^'^-insensitive, and activated by phorbol 

esters. However, it does not have a pseudosubstrate domain (Hofmann, 1997), 

Table 3. PKC subspecies in mammalian tissues, (Modified from Nishizuka, 1992) 

Sub- Amino acid Molecular 
species residues size (kDa) 

Group A: conventional PKCs (cPKCs) 
a 672 76.79 PS, Ca'^ DG, FFA, LysoPC 
pi 671 76.79 PS, Ca^\ DG, FFA, LysoPC 
Pll 673 76.93 PS, Ca^*, DG, FFA, LysoPC 
y 697 78.37 PS, Ca'^ DG, FFA, LysoPC 

Group B: novel PKCs (nPKCs) 
8 673 77.52 PS, DG 
8 737 83.47 PS, DG, FFA 

683 77.97 PS, DG 
912 115 PS, DG 

Group C: atypical PKCs (aPKCsJ 
0 707 81.57 PS, DG 

592 67.74 PS, FFA 
I 586 67.2 PS, FFA 

DG, diacyl glycerol; PS, phosphatidyiserine; FFA, cis unsaturated fatty acid; Lyso PC, 

lysophosphatidyicholine. 
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Fig. 16. Structure of PKC subspecies. Four conserved (C1-C4) and five variable (VI to 

V5) regions of the cPKC group are indicated (modified from Mochly-Rosen and Gordon, 

1998; Nishizui<a, 1992). 

Several PKC isozymes are usually found within one cell. In general, most 

inactive PKCs are localized in the cytosol and, upon activation, they become more 

hydrophobic and translocate to the plasma membrane (Mochly-Rosen and Gordon, 

1998). However, recent evidence demonstrates that both inactive and active PKC 

isozymes can be localized in specific intracellular sites, depending on their bindings to 

specific anchoring molecules and, upon stimulation, translocated to new distinct 

intracellular sites. For instance, inactive PKC-pil are associated with the fibrillar 

structures of cardiac myocytes, and translocate to the perinucleus and the cell 

periphery upon activation (Disatnik et al., 1994). The anchoring proteins for activated 

PKC isozymes are called "receptors for activated C-kinase" (RACKs), and there is 

another set of proteins that anchor inactive PKC isozymes, which are called "receptors 

for inactive C-kinase" (RICKs; Mochly-Rosen et al., 1991). It is likely that the specific 

and unique cellular functions of PKCs are determined by the binding of isozymes to 

specific anchoring proteins in close proximity to particular groups of substrates and are 

different from others. RICKs, such as PS binding proteins/substrates, are proteins that 

bind PKC in an isozyme-specific and saturable manner, because they are localized 
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differently in each inactive PKC isozymes. PIVIA and other PKC activators induce the 

release of RICK from PKC, resulting in the binding of PKC to its RACK (Mochly-rosen 

and Gordon, 1998). The RACK-bound PKC is active and the binding site for substrate 

is available, leading to the induction of various cellular responses (Fig. 17). 
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Fig. 17. A model for interaction of PKC with anchoring proteins. The binding sites for 

RlCKs and RACKs are located in the regulatory domain of PKC. RICKs, receptors for 

inactive C-kinase; RACKs, receptors for activated C-kinase; PS, phosphatidylserine; Ca, 

calcium; DG, diacylglycerol (modified from Mochly-Rosen and Gordon, 1998). 

Various PKC isozymes are identified in pancreatic islets (e.g. a, p, 5, s, and i), 

and in p-cell lines (e.g. a, p, 5, s, |LI and i) (Jones and Persaud, 1998), however, the 

identification of PKC isozymes presented in a-cells has never been established. 

Activation of PKC by a phorbol ester PMA increases glucagon release from the 

pancreas (Hii et al., 1986; Niki et al., 1986). In addition, the down-regulation of PKC 

by pretreating rat islets with PMA for 24 h leads to a decrease in arginine-induced 

glucagon release (Bjaaland et al., 1988). Together, these findings suggest the 
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participation of PKC in the regulation of glucagon release. Although, PKC seems to 

play a positive role in the regulation of glucagon release fronn the pancreas, PKC 

negatively regulates AVP-induced IP3 production and [Ca^^Jj increases in many different 

systems, such as In the rat glomerulosa (Gallo-Payet et al., 1991), vascular smooth 

muscle (Stassen et al., 1989) and pancreatic (3 cells (Gao et al., 1994). Therefore, it is 

imperative to characterize the role of PKC on AVP-induced glucagon release, since AVP 

may physiologically induce glucagon release. 

PMA has been used as a substitute of DAG in vitro to activate PKC and it is a 

useful tool that has been used to study the functions of PKC in many different cell 

systems. However, PMA also exerts additional effects that are not related to PKC 

activation; for example, it increases insulin release by evoking membrane depolarization 

and [Ca^"^], increase in RINm5F cells (Yada et al., 1989). Since DAG is rapidly 

metabolized, GAG, a DAG analog, also has been used to mimic endogenous PKC 

activation to study the role of PKC in ligand-induced cellular responses (Willkinson and 

Hallam, 1994). 

In addition to the use of endogenous and exogenous PKC activators, several 

specific PKC inhibitors have also been used to investigate the involvement of PKC on 

agonist-induced cellular responses. A number of specific PKC inhibitors are currently 

available for the inhibition of a number of PKC isozymes, including staurosporine, Ro 

31-8220, Go 6976, CGP 54345, CGP 53506 (Hofmann, 1997) and LY379196 (Dr. 

James R. Gillig, personal communication). They all bind to the ATP binding site {C3) of 

the catalytic domain to inhibit protein kinase activity. 

Staurosporine, a bisindolylmaleimide compound, is a potent, but not a specific 

PKC inhibitor, because it also inhibits protein kinase A (PKA), protein kinase G (PKG), 

myosin light chain kinase (MLCK) and tyrosine kinase. Ro 31-8820, a derivative of 

staurosporine, is much more specific for inhibition of PKC than staurosporine. It can 

inhibit most of different PKC isozymes, including cPKCs, nPKCs and aPKCs (Wilkinson 

et al., 1993). Go 6976, an indolocarbazole compound, is a potent and specific inhibitor 

for PKC-a, -pi (Hofmann, 1997) and -|a (Gschwendt et al., 1996). CGP 54345, a 

phenylamino-pyridine compound, is the most selective PKC-a inhibitor, which has no 

inhibitory effect on any other PKC isozymes (Hofmann, 1997). CGP 53506, a 

phenylamino-pyridine derivative, is a preferential inhibitor for all cPKC isozymes 
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(Hofmann, 1997), LY379196 is the inhibitor specific for only PKC-pi and -pll (Dr. 

James R. Gillig, personal communication) (Table 4). 

Activation of PKC by DAG has been demonstrated to inhibit the formation of IP3 

by inhibiting the receptor-G protein coupling, or the activation of PPI-PLC in many 

systems. The negative feed back regulation of PKC may cause phosphorylation of the 

receptor, G protein or PPI-PLC, interference with the coupling of a and (3y subunit, or 

inactivation of PLC-P, thus leading to the attenuation of IP3 formation and [Ca^^Jj (Fig. 

18) (Babich et al., 1993; Mangoura et al, 1995). Furthermore, activation of PKC has 

been found to inhibit Ca^^ influx through Ca^"^ channels (Ashcroft, 1994; Drummond, 

1985; Sena et al., 1995). In the present study, therefore, it is important to investigate 

the role of PKC on AVP-induced increases in IP3 production, [Ca^"^]! and glucagon 

release in a-cells. 

Table 4. IC50 values of isozyme-selective PKC inhibitors (modified from Hofmann, 1997; 

Wilkinson et al., 1993; Dr. James R. Gillig, personal communication). 

a Pl Pll y 5 8 T1 

Staurosporine (nM) 2.5 2.7 9.2 3.6 27 49 9.2 1300 n.d. 

Ro 31-8220 (nM) 5 24 14 27 - 24 - - -

Go 6976 (nM) 2.3 6.2 n.d. n.d. no inh. no inh. n.d. no inh. 20 

CGP 53506 (nM) .79 4.8 3.3 3.0 >500 >500 9.2 >500 -

CGP 54345 (^iM) 5.8 100 100 100 >100 >100 100 >100 -

LY379196 (^M) 0.6 .05 .03 0.6 0.7 5 0.3 48 -

n.d., not determined; no inh., no inhibition 
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V  2 0 ?  

Glucagon Release 

Fig. 18. A model of the negative feed back regulation of PKC on AVP-induced glucagon 

release. 1) PKC may exert the negative feedback role to inhibit the receptor-G protein 

coupling; 2) PKC may exert the negative feedback role to inhibit the coupling between 

a and subunit; 3) PKC may exert the negative feedback role to inhibit the formation 

of PIP2; 4) PKC may exert the negative feedback role to inhibit the activation of PLCp. 
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CHAPTER II CHARACTERIZATION OF RECEPTORS MEDIATING AVP- AND OT-

INDUCED GLUCAGON RELEASE FROM THE RAT PANCREAS 

A paper published in tiie American Journal of Physiology July, 1999 

Sirintorn Yibchok-anun, Henrique Cheng, Patricia A. Heine and Walter H. Hsu 

ABSTRACT 

We characterized the receptors that mediate arginine vasopressin (AVP)- and 

oxytocin (OT)-induced glucagon release by use of a number of antagonists in the 

perfused rat pancreas and fluorescence imaging of the receptors. AVP and OT (3 pM-3 

nM) increased glucagon release in a concentration-dependent manner. The antagonist 

with potent Vib receptor-blocking activity, CL-4-84 (10 nM) abolished AVP (30 pM)-

induced glucagon release, but did not alter OT (30 pl\/l)-induced glucagon release. 

d(CH2)5[Tyr(Me)^]AVP (10 nM), a Via receptor antagonist, and L-366,948 (10 nM), a 

highly specific OT receptor antagonist, failed to inhibit AVP-induced glucagon release. 

In contrast, L-366,948 (10 nM) abolished OT (30 pM)-induced glucagon release, but 

did not change the effect of AVP. Fluorescent microscopy of rat pancreatic sections 

showed that fluorescence-labeled AVP and OT bound to their receptors in the islets of 

Langerhans and that the bindings were inhibited by 1 }j.M of CI-4-84 and L-366,948, 

respectively. Because AVP and OT at physiological concentrations (3-30 pM) increased 

glucagon release, we conclude that AVP and OT increase glucagon release under the 

physiologic condition through the activation of Vib and OT receptors, respectively. 
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INTRODUCTION 

ARGININE VASOPRESSIN (AVP) and oxytocin (OT) are synthesized in the 

hypothalamus and secreted from the posterior pituitary gland. AVP and OT are also 

found in various tissues, including ovary, oviduct, follicular fluid (22), adrenal (3), testis 

(14), thymus (11) and pancreas (2). In addition to the regulation of fluid homeostasis, 

AVP induces glycogenolysis (15), proliferation of the pituitary gland (20) and vascular 

smooth muscle cells (24), vasoconstriction (8) and secretion of catecholamine (10), 

glucagon and insulin (6). The major physiological functions of OT are to regulate milk 

ejection and uterine contractions, but it also increases adrenocorticotropic hormone 

(ACTH) (23), glucagon and insulin release (6). A small concentration of 20 pg/ml of 

AVP and OT increased glucagon release, but not insulin release from the perfused rat 

pancreas (6). Moreover, both AVP and OT elicited a concentration-dependent 

stimulation of glucagon release but failed to influence insulin release from rat islets (5). 

A high density of [^Hloxytocin binding was present in the periphery of the islets of 

Langerhans that corresponded to the location of pancreatic a-cells (25). Together, 

these findings suggest that AVP and OT may play a physiological role in increasing 

glucagon release. 

AVP receptors have been classified into Via, Vib and V2 receptors. Via receptors 

mediate glycogenolysis (15) and vasoconstriction (8); V^ receptors mediate the release 

of ACTH (4), catecholamines (10), insulin (17) and glucagon (29) and V2 receptors 

mediate antidiuresis (13). 

A number of receptor antagonists have been used to pharmacologically 

characterize the receptors that mediate the effects of AVP and OT in many cells and 

tissues (18), including insulin and glucagon-secreting cells. AVP and OT can cross-

react with each other's receptors; for example, both AVP and OT induce insulin release 

through Vib receptors in the perfused rat pancreas and the clonal p-cell line RINm5F 

(17). In addition, both hormones induce ACTH release through Vib receptors in the rat 

adenohypophysis (4, 23), and lysine vasopressin stimulates porcine myometrial 

contractions through OT receptors (30). Similarly, in our previous study, AVP and OT 

induced glucagon release by activating Vib receptors in clonal a-cells ln-R1-G9 (29). 
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In this study, we characterized the receptors that mediate AVP- and OT-induced 

glucagon release by using the antagonists that block V,a, Vib, and OT receptors, 

respectively, from the perfused rat pancreas. In addition, we used fluorescence-labeled 

vasopressin (VP) and OT as ligands to detect AVP and OT receptors in the rat islets. 

Fluorescence-labeled peptides have been used to study AVP receptors; for example, 

fluorescence-labeled AVP analogues have been used to study Via receptors (12) and Vj 

receptors (21). From the results of the present study, we conclude that AVP and OT 

play a physiological role in increasing glucagon release through V^, and OT receptors, 

respectively. 

MATERIALS AND METHODS 

Test agents 

AVP, OT, d(CH2)5[Tyr{Me)]^AVP and Phenylmethylsulfonyl fluoride (PMSF) were 

purchased from Sigma Chemical (St. Louis, MO). Phenylac\D-Tyr(Me)^Arg®'®,Lys®-

amide]-vasopressin (Fluo-VP) and fluo-Lys®-oxytocin (Fluo-OT) were purchased from 

Advanced Bioconcept (Quebec, Canada). Pentobarbital sodium was purchased from 

Fort Dodge Laboratories (Fort Dodge, lA). 4-0H-phenacetyl-D-Tyr{Me)-Phe-Gln-Asn-

Arg-Pro-Arg-NHz (CL-4-84) was donated by Dr. Maurice Manning of Medical College of 

Ohio (Toledo, OH). Cyclo-(L-Pro-D-2-naphthyl-Ala-L-lle-D-pipecolic acid-L-pipecolic acid-

D-His) (L-366,948) was donated by Merck Research Laboratories (West Point, PA). ^"1-

glucagon was purchased from Linco Research Inc. (St. Charles, MO). Glucagon 

antibody was donated by Dr. Joseph Dunbar of Wayne State University (Detroit, Ml), 

and glucagon standard was donated by Eli Lilly Laboratories (Indianapolis, IN). 

Pancreatic perfusion 

Male Sprague-Dawley rats weighing 500-650 g were used in the dose-response 

experiments, and rats weighing 220-350 g were used in the receptor-antagonism 

experiments. All the rats were born and grown in our facilities (Laboratory Animal 

Resource). They were maintained at 22°C, 40-60% humidity and a 12:12-h light-dark 

cycle. The rats were fed ad libitum with Purina chow. The in situ rat pancreatic 
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perfusion with an open system was performed during the daytime as previously 

described (27). Briefly, the rats were anesthetized with pentobarbital sodium (60 

mg/kg ip) and were maintained at 37°C on a hot plate during the experiment. The 

celiac arteries were cannulated with a polyvinyl tubing (0.625 mm ID), then the 

pancreata were immediately perfused with the Krebs-Ringer bicarbonate buffer (KRB) 

supplemented with 20 mM HEPES, 5.5 mM glucose, 1 % dextran and 0.2% BSA as a 

basal medium. The KRB was continuously aerated with 95% 02-5% CO2 at pH 7.4. 

The perfusion rate was 1 ml/min, and the effluent fluid from the portal vein, which was 

cannulated with a vinyl tubing (1.12 mm ID), was ~1 ml/min. The rats were euthanized 

Immediately after the placement of cannulas and the beginning of the flow. After an 

equilibration period of 20 min, the effluent fluid was collected every minute. For the 

dose-response experiments, after the baseline period of 10 min, the perfusate 

containing AVP or OT (3 pM-3 nM) was administered for 10 min followed by a washout 

period with the basal medium for 10 min. For the antagonism experiments, after the 

baseline period of 5 min, the pancreas was pretreated for 10 min with the medium 

containing one of the three antagonists: CL-4-84 (1, 3, 10 nM), an antagonist with 

potent Vib blocking activity (26), d(CH2)5[Tyr(Me)]^AVP (10 nM), a V,a receptor 

antagonist (18), and L-366,948 (1, 3, 10 nM), a highly selective OT receptor 

antagonist (27). This was followed by the medium containing AVP or OT (30 pM) and 

an antagonist for 10 min, and the basal medium for another 10 min for the washout 

period. The perfusate containing arginine (1 mM) was administered as a positive 

control for 5 min at the end of all experiments. The effluent fractions were kept at 4°C 

and subsequently assayed for glucagon by use of radioimmunoassay, following the 

procedures provided by Unco Research (St. Charles, MO). 

Fluorescence imaging of AVP and OT receptors in pancreatic islet 

The rat pancreas was perfused with KRB, as described in Pancreatic perfusion, for 

5 min to eliminate the blood inside the pancreas. The perfusion rate was set at 3 

ml/min. The pancreas was then collected and cut into small pieces (~3 x 3 mm^) and 

frozen in -80°C isopentane. The frozen tissue was sliced into 17- to 20-J4.M thickness, 

mounted on poIy-L-lysine-coated slides and stored at -20°C until use. The tissue 
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sections were processed following a protocol provided by the manufacturer (Advanced 

Bioconcept). Briefly, the frozen tissue sections were preincubated in an incubation 

buffer (50 mM Tris-HCI, 10 mM MgCl2, 1 % BSA, 1 mg/ml bacitracin and 0.5 mM 

PMSF, pH 7.4) containing CL-4-84 (1 or 10 pM), L-366,948 (1 or 10 jaM), 

d{CH2)5[Tyr{Me)]^AVP (10 ^.M), AVP (10 jiM) or OT (10 )u,l\/l) at 4°C for overnight and 

incubated with the incubation buffer containing 30 nM of Fluo-VP or Fluo-OT in the 

absence or presence of an antagonist or unlabeled AVP or OT as indicated in Pancreatic 

perfusion, at room temperature for 1 h. After incubation, the sections were washed 4 

times for 60 s in a cold rinsing buffer (50 mM Tris-HCI and 10 mM MgClj, pH 7.4) at 

4°C and air-dried in the dark under a cool stream of air. The fluorescence bindings 

were visualized using a fluorescent microscope (Leica DMLB; Leica Microscopy 

Systems, Heerbrugg, Switzerland) and photographs were taken with a 20X lens using 

the Leica MPS 60-MPS 30 photographic system. 

Data expression and statistical analysis 

The effluent concentrations of glucagon were expressed as a percentage of the 

baseline level (mean of last 5 baseline values) in mean ± SE. The area under the curve 

(AUC) for the 10-min treatment period was calculated using Transforms and 

Regressions (SigmaPlot 4.0; SPSS Inc., Chicago, IL). In dose-response experiments, 

the AUC was expressed as a percentage of the area of the basal control group. In 

antagonism experiments, the AUC was expressed as a percentage of the area of AVP 

or OT control group. Data were analyzed using analysis of variance (ANOVA) to 

determine the effect of treatment. The Fisher least significant difference test was used 

to determine the difference between means for which the ANOVA indicated a 

significant (^<0.05) F ratio. 

RESULTS 

The results in Figs. 1 and 2 show the profile of glucagon release to AVP and OT 

(3 pM-3 nM), respectively, together with the basal control profile, which was obtained 

by perfusion with KRB alone for 40 min. AVP and OT (3 pM-3 nM) increased glucagon 
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release from the perfused rat pancreas in a concentration-dependent manner. Both 

peptides increased glucagon release in a biphasic pattern: a peak followed by a 

sustained phase or a second peak (for 3 nM AVP and OT), in which the peak initiated in 

< 1 min and reached the maximum within 2 min. AVP (3 pl\/l-3 nM) induced a 

maximum increase in glucagon release by 2.5, 8, 12 and 10-fold, respectively, over the 

basal control group. The sustained glucagon release induced by AVP (3-300 pM) was 

~2- to 3-fold that of the basal control group, and the second peak of glucagon release 

induced by 3 nM AVP was 9-fold over that of the basal control group (Fig. 1). At the 

highest concentration of AVP studied (3 nM), the flow rate in the portal vein was 

decreased by "20%, presumably because of vasoconstriction, but the glucagon 

response was not delayed or reduced to any extent. The OT (3 pM-3 nM)-induced 

maximum increase in glucagon release were 3, 7, 14 and 11-fold, respectively, over 

that of the basal control group. The sustained glucagon release by 3-300 pM OT was 

~2-foId and the second peak induced by 3 nM OT was 4-fold that of the basal control 

group (Fig. 2). The effluent glucagon concentrations returned to the baseline on 

removal of AVP and OT (during the washing period) and increased to "5- to 14-fold of 

the baseline value on the administration of 1 mM arginine. By comparison of the AUCs, 

there were no significant differences between AVP and OT (3-300 pM)-induced 

glucagon release. At 3 nM, AVP-induced glucagon release was significantly different 

from that of OT. However, the difference was only in the sustained phase (Fig. 3). 

The ECgoOf OT was 8.9 ± 2.9 pM and the ECgoof AVP was estimated to be 25.1 ± 

11.3 pM, because the maximum glucagon release was not acquired in the AVP dose-

response experiment. 

AVP and OT at 30 pM were used in the antagonism experiments because of the 

submaximai increase in glucagon release by the two peptides. At 30 pM, AVP and OT 

induced about four- and twofold increases in the peak and the sustained phase, 

respectively, compared with the basal control group. CL-4-84 (1,3, and 10 nM), an 

antagonist with blocking activity, inhibited AVP (30 pM)-induced glucagon 

release in a concentration-dependent manner (Fig. 4). By comparison of the AUCs, CL-

4-84 (3 and 10 nM) significantly reduced AVP-induced glucagon release with an ICgoOf 

2.2 ±0.1 nM. Pretreatment with CL-4-84 (10 nM) abolished AVP-induced glucagon 

release and even lowered glucagon to the levels below the baseline. However, 
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diCHzlglTyrdy/Iel^JAVP (10 nM), a Vi^ receptor antagonist, and L-366,948 (10 niVI), a 

highly specific OT receptor antagonist, failed to inhibit AVP-induced glucagon release 

(Fig. 5). in contrast, L-366,948 (1, 3, and 10 nM) inhibited OT (30 pM)-induced 

glucagon release in a concentration-dependent manner (Fig. 6). By comparison of the 

AUCs, 3 nM L-366,948 significantly lowered and 10 nM L-366,948 abolished OT-

induced glucagon release. The IC50 of L-366,948 was 3 ± 0.3 nM. CL-4-84 (10 nM), 

the receptor antagonist with blocking activity, did not significantly reduce OT 

(30 pM)-induced glucagon release (Fig. 7). None of the receptor antagonists alone 

significantly changed glucagon release. 

The results in figs. 8 and 9 show the fluorescence imaging of AVP and OT 

receptors in the rat islets. Fluorescent microscopic examination of the pancreatic 

sections incubated with either Fluo-VP or Fluo-OT revealed selective fluorescence 

labeling of AVP and OT receptors expressed in the rat pancreatic islets (Figs. 8B and 

95) compared with the negative control (Figs. 8A and 9^4). The binding was specific 

because the fluorescence was no longer detectable when the incubation was performed 

in the presence of 10 |aM VP or OT (Figs. 8C and 9C). The fluorescence labeling of 

Fluo-VP was selective for V^b receptors because it was blocked by preincubation of the 

tissue sections with 1 pM CL-4-84 (Fig. 8D), but not by 10 jaM L-366,948 (Fig. 8£) or 

10 |aM d(CH2)5[Tyr(Me)^]AVP (Fig. 8F). The fluorescence labeling of Fluo-OT was 

selective for OT receptors expressed in the rat pancreatic islets, because it was blocked 

by preincubation of the tissue sections with 1 |a.M L-366,948 (Fig. 9D), but not by 10 

^M CL-4-84 (Fig. 9£). 

DISCUSSION 

In the present study, AVP and OT (3 pM-3 nM) evoked glucagon release from the 

perfused rat pancreas in a concentration-dependent manner, in which AVP and OT at 3 

and 30 pM increased glucagon release by about three- and eightfold, respectively. 

These findings indicated that AVP and OT may physiologically have increased glucagon 

release, because the concentrations of AVP and OT studied (3 and 30 pM) are similar 
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to the plasma concentrations of AVP (3-20 pM) (9) and OT (8-25 pM) in the rat (16). 

This statement is supported by the findings that a neural lobe extract evoked glucagon 

release (5) and a rise in plasma glucagon concentrations of the rats subjected to 

hemorrhage that was found to be mediated by an increase in the release of AVP and 

OT (7). In addition, AVP and OT are present in human and rat pancreatic extracts, 

suggesting that both peptides are synthesized in the pancreas and thus could exert a 

paracrine function on pancreatic hormone release (2). 

The increase in glucagon release mediated by AVP and OT (30 pM) was higher in 

the larger rats {500-650 g, ~1 year old, used in the dose-response experiments) than in 

the smaller rats (220-350 g, 2-3 mo old, used in the antagonism experiments). We 

speculate that the pancreata of the larger (or older) rats express more V,b and OT 

receptors or have a more active signal transduction system for these receptors than the 

smaller (or younger) rats. More work is needed to find out why these peptides evoke 

more glucagon release in larger (older) rats than smaller (younger) rats. 

CL-4-84 is an antagonist with high affinity for both V,a [inhibitory constant (K;) = 

0.45 + 0.04 nM] and Vib (K, = 2.2 ± 0.1 nM) receptors (26). It is also a weak OT 

antagonist [antagonistic affinity (pAz) = 7.38 ± 0.06] (19). d{CH2)5[Tyr(Me)^]AVP is a 

potent and selective Via receptor antagonist (pAj = 8.62) (18). L-366,948 is a highly 

selective OT receptor antagonist which is >400 times more selective for OT receptors 

than for Via and Vz receptors (27). We also confirmed the results from pancreatic 

perfusion by detecting these receptors by use of fluorescence labeling VP and OT. We 

found that Fluo-VP and Fluo-OT selectively bound to Vib and OT receptors, 

respectively, in the rat islets. The labels of Fluo-VP and Fluo-OT were seen in the entire 

islets, an observation suggesting that both Vib and OT receptors are expressed in 

pancreatic a- and p-cells, among others. In addition, in perfused rat pancreata, we 

found that 0.3 nM OT increased insulin release about three-fold over the basal insulin 

level and this increase was antagonized by 3 nM L-366,948 (unpublished data). The 

present finding is different from the previous one from our laboratory, in which 100 nM 

OT induced insulin release from rat perfused pancreas by activating Vib receptors (17). 

Moreover, in an autoradiographic binding study of the rat pancreas, a high density of 

[^H]oxytocin binding was found in the periphery of the islets, which corresponded to 

the localization of a-cells (25). Thus, the lower concentration of OT (0.3 nM) may 
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induce insulin release by activating OT receptors, whereas the higher concentration of 

OT (100 nM) may induce insulin release by activating Vib receptors (17). 

Our present findings suggest that AVP evokes glucagon release by activating V^b 

receptors in a-cells of the rat pancreas, which is similar to AVP-induced ACTH release 

from the rat adenohypophysis (4), catecholamine release from the rat adrenal medulla 

(10) and glucagon release from the hamster glucagonoma cells ln-R1-G9 (29). 

However, in the perfused rat pancreas, OT evoked glucagon release by activating OT, 

but not AVP receptors. In the dog, OT has been shown to increase plasma levels of 

glucose, insulin and glucagon and to increase the rate of glucose production and uptake 

by activating OT receptors (1). These results differ from those of ours in ln-R1-G9 

cells, in which OT increased glucagon release through Vib receptors (29). in addition, 

AVP and OT increased ACTH release through Vib receptors (4, 23). Although AVP and 

OT induced glucagon release by activating different receptors, our preliminary data 

showed that there was no synergism between these two peptides (unpublished data). 

The action of AVP on glucagon release exerted an inverse relationship with glucose 

concentrations; in the presence of 1.4 mM glucose, AVP (3 pM)-induced glucagon 

release was significantly higher than that in the presence of 5.5 mM glucose 

(unpublished data). 

By comparison of the responses at the same concentration of AVP and OT, the 

potencies of both peptides were similar in the perfused rat pancreas, with exception 

that 3 nM of AVP evoked a significantly higher increase in glucagon release than 3 nM 

of OT. This finding differs from that of our previous study, in which OT-induced 

glucagon release in ln-R1-G9 cells was ~30-fold less potent than AVP (29). 

Apparently, OT receptors are not expressed in clonal ln-R1-G9 a-cells. We also 

confirmed these findings by detecting AVP and OT receptors in ln-R1-G9 cells by use of 

fluorescence-labeled VP and OT. We found that 30 nM of both Fluo-VP and Fluo-OT 

bound to Vib receptors on the cell membrane since the bindings were blocked by 30 nM 

CL-4-84, but not by 300 nM L-366,948 or d(CH2)5[Tyr(Me)^]AVP (unpublished data). 

OT, therefore, increases glucagon release from ln-R1-G9 ceils by activating Vib 

receptors (29). Based on these findings, we conclude that ln-R1-G9 cells are not an 

adequate model for the study of OT-induced glucagon release. 
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Our present findings suggest that AVP and OT increase glucagon release under 

the physiological condition by activating Vib and OT receptors, respectively. Because 

specific Vib receptor antagonists are currently unavailable for the characterization of 

these receptors, further studies utilizing molecular approaches are warranted to confirm 

our present findings. 
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Fig. 1. Effect of arginine vasopressin (AVP, 3 pM-3 nM) on glucagon release from 

perfused rat pancreas, in tfiese experiments, a 20-min equilibration period preceded 

time 0. AVP was administered for 10 min (lieavy line). Values are mean ± SE, n = 3. 

•, Basal control; A, AVP 3 pM; •, AVP 30 pM ; •, AVP 300 pM; T, AVP 3 nM. Range 

of baseline glucagon concentrations of effluents was 24-106 pg/ml. 
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Fig. 2. Effect of oxytocin (OT, 3 pM-3 nM) on glucagon release from the perfused rat 

pancreas. In these experiments, a 20-min equilibration period preceded time 0. OT 

was administered for 10 min (heavy line). Values are mean ± SE, n = 3. •, Basal 

control; A, OT 3 pM ; •, OT 30 pM; •, OT 300 pM; •, OT 3 nM. Range of baseline 

glucagon concentrations of effluents was 35-182 pg/ml. 
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Fig. 3. Effects of AVP and OT-induced glucagon release from perfused rat pancreas. 

Values are mean ± SE (n = 3), obtained by calculating areas under 10-min glucagon 

release curve and expressed as a percentage of the control group. * P < 0.05 

compared to the control group 
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Fig. 4. Effect of CL-4-84 (1,3 and 10 nM) on AVP-induced glucagon release from 

perfused rat pancreas. After baseline period of 5 min, CL-4-84 was administered for 

10 min followed by AVP (30 pM) in the presence of CL-4-84 for anotlier 10 min. 

Heavy lines show treatments as indicated above them. Values are mean + SE, n = 3. 

•, Basal control; v, AVP 30 pM; A, CL-4-84 1 nM -t- AVP 30 pM;, <> CL-4-84 3 nM -I-

AVP 30 pM; •, CL-4-84 10 nM + AVP 30 pM. Range of baseline glucagon 

concentrations of effluents was 32-225 pg/ml. 
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Fig. 5. Effects of dlCHzlgLTyrliVlel^lAVP and L-366,948 (10 nM) on AVP-induced 

glucagon release from perfused rat pancreas. After baseline period of 5 min, antagonist 

was administered for 10 min followed by AVP (30 pM) in the presence of the 

antagonist for another 10 min. Heavy lines show the treatments as indicated. Values 

are mean + SE, n = 3. •, Basal control; v, AVP 30 pM; •, d(CH2)5[Tyr(Me)^]AVP 10 

nM + AVP 30 pM; L-366,948 lOnM + AVP 30 pM. Range of baseline glucagon 

concentrations of effluents was 32-139 pg/ml. 
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Fig. 6. Effects of L-366,948 (1,3 and 10 nM) on OT-induced glucagon release from 

perfused rat pancreas. After the baseline period of 5 min, L-366,948 was administered 

for 10 min, followed by OT (30 pM) in the presence of L-366,948 for another 10 min. 

Heavy lines show the treatments as indicated. Values are mean ± SE, n = 3. •, Basal 

control; v, OT 30 pM; •, L-366,948 1 nM + OT 30 pM; L-366,948 3 nM H- OT 30 

pM; A, L-366,948 10 nM + OT 30 pM. Range of baseline glucagon concentrations of 

effluents was 32-175 pg/ml. 
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Fig. 7. Effect of CL-4-84 (10 nM) on OT-induced glucagon release from the perfused rat 

pancreas. After baseline period of 5 min, CL-4-84 was administered for 10 min 

followed by OT {30 pM) in the presence of CL-4-84 for another 10 min. Heavy lines 

show treatments as indicated above. Values are mean ± SE, n = 3. Basal control; 

V, OT 30 pM; •, CL-4-84 10 nM + OT 30 pM. Range of baseline glucagon 

concentrations of effluents was 32-139 pg/ml. 
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Fig. 8. Florescent microscopic images of the Islets of Langerhan in rat pancreatic sections 

labeled with Fluo-VP. Photograghs were tal<en under a 20X lens. Sections were incubated 

with an incubation buffer as the negative control (A), 30 nM Fluo-VP (S), 10 |iM unlabeled 

AVP + 30 nM Fluo-VP (C), 1 ̂ iM CL-4-84 + 30 nM Fluo-VP (D), 10 fxM L-366,948 + 30 nM 

Fluo-VP (£) and 10 |iM d(CH2)5[Tyr(Me)2]AVP + 30 nM Fluo-VP (F) for 1 h at room 

temperature. Section was pre-incubated with the buffer, AVP, or an antagonist at 4°C for 

overnight. Data shown are representative of 3 rat pancreata. 
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Fig. 9 Florescent microscopic images of Islets of Langeriian in rat pancreatic sections 

labeled with Fluo-OT. Photograghs were taken under a 20X lens. Sections were incubated 

with an incubation buffer as the negative control (A), 30 nM Fluo-OT (S), 10 )aM unlabeled 

OT + 30 nM Fluo-OT (C), 1 |xM L-366.948 + 30 nM Fluo-OT (D) and 10 tiM CL-4-84 + 30 nM 

Fluo-OT (£) for 1 h at room temperature. Section was pre-incubated with buffer, OT, or an 

antagonist at 4°C for overnight. Data shown are representative of 3 rat pancreata. 
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CHAPTER III EFFECTS OF ARGININE VASOPRESSIN AND OXYTOCIN ON 

GLUCAGON RELEASE FROM CLONAL a-CELL LINE IN-R1-G9: INVOLVEMENT 

OF Vib RECEPTORS 

A paper published in Life Sciences 63:1871-1878, 1998. 

Sirintorn Yibchok-anun and Walter H. Hsu 

ABSTRACT 

Receptor antagonists were used to determine which receptor mediates the effect 

of arginine vasopressin (AVP) and oxytocin (OT) on glucagon release from hamster 

glucagonoma ln-R1-G9 cells. Both AVP (10 ®-10"® M) and OT (10 ®-10 ® M) increased 

glucagon release from ln-R1-G9 cells in a concentration-dependent manner and AVP 

was "SO-fold more potent than OT in this aspect. The antagonists with potent Vib 

receptor blocking activity, CL-4-84 (10 ®-10 ® M), dP[Tyr(Me)']AVP and AO-2-44 (10 ®-

10'® M), antagonized the effect of both AVP and OT in a concentration-dependent 

manner. Other receptor antagonists at 10 ® M failed to block the effect of AVP and OT; 

these included a highly selective OT-receptor antagonist, L-366,948 and a V^ /Vj 

receptor antagonist WK-3-6. However, these antagonists at higher concentrations (10 ® 

and 10 '* M) caused inhibition of AVP- and OT-induced glucagon release. The order of 

antagonistic potency was estimated as CL-4-84 « dP[Tyr(Me)^]AVP w AO-2-44 > WK 

3-6 > L366,948. d[D-3-Pal]VP (10"®-10"® M), a Vi^ receptor agonist, also increased 

glucagon release in a concentration-dependent manner, which was antagonized by 

dPLTyrdVlel^'lAVP (10®-10 ® M) and CL-4-84 (10 ^-10 ® M), but not by WK-3-6 (10® M) 

or L-366,948 (10 ® M). Therefore, the stimulatory effects of both OT and AVP on 

glucagon release may be mediated by V,,, receptors, but not by Via, V2, or OT 

receptors. 
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INTRODUCTION 

The neurohypophysial hormones arginine vasopressin (AVP) and oxytocin (OT), 

the nonapeptides synthesized in hypothalamus and released by posterior pituitary gland, 

exert different biological effects in mammals. The major physiological roles of AVP and 

OT are to regulate water and solute excretion by the kidney and blood pressure, as well 

as to regulate uterine contractions and milk ejection, respectively. These two 

hormones and their receptors, however, are found in the pancreas and may 

physiologically stimulate the release of pancreatic hormones, glucagon and insulin (1-4). 

AVP and OT have a greater impact on glucagon release than insulin release since a low 

concentration of these agonists (20 pg/ml) caused an increase in glucagon release, but 

not insulin release, from the perfused rat pancreas (3). Moreover, they elicited a 

concentration-dependent stimulation of glucagon release but failed to influence insulin 

release from rat islets incubated in Medium 199 containing 5.6 mM glucose (5). 

AVP and OT exert their effects through at least four subtypes of receptors (V^g, 

Vib» V2, and OT receptors). These receptor subtypes have been distinguished on a 

functional, pharmacological, and/or molecular biological basis. V,a receptors mediate 

glycogenolysis (6, 7 [review]) and vasoconstriction (8, 9 [review]), Vib(or V3) receptors 

mediate the release of ACTH (10, 11), catecholamine (12) and insulin (13), and V2 

receptors mediate antidiuresis (14, 15 [review]). Vasopressin and OT may cross-react 

with each other's receptors; for instance, lysine vasopressin stimulates porcine 

myometrial contraction through OT receptors (16) and OT stimulates the release of 

ACTH (17) and insulin (13) through Vib receptors, but not OT receptors in the rat. 

In the present study, we investigated the functional receptors that mediated 

AVP- and OT-induced glucagon release from clonal a-cell line ln-R1-G9 by using static 

incubation. We studied the effect of the antagonists for Via, Vib, ^2< and OT receptors 

on AVP- and OT- induced glucagon release. In addition, we investigated the effect of 

deamino[D-3-(3'-pyridyl)-Ala^, Arg®]VP (d[D-3-Pal]VP), an agonist with potent Vib 

activity (19), on glucagon release. We have concluded that the stimulatory effects of 

AVP- and OT-induced glucagon release from ln-R1-G9 cells were mediated through Vib 

receptors, but not Via, ^z> or OT receptors. 
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MATERIALS AND METHODS 

Cell culture 

The hamster glucagonoma ln-R1-G9 cells were maintained in RPMI-1640 medium 

with 10% fetal bovine serum and aerated with 5% C02-95% air at 37°C. All 

experiments were performed using cells from passages 24 to 34. 

Static incubation 

The cells were plated onto 24-well plates (Corning, Oneonta, NY) at 10® cells/well 

and were grown for 3-4 days. The growth medium was then removed and replaced 

with Krebs-Ringer bicarbonate buffer (KRB) for the experiment. Glucagon released from 

ln-R1-G9 ceils was determined using static incubation in response to agonists and 

antagonists. For determination of the dose responses to AVP, OT, and d[3-D-Pal]VP 

(Sigma Chemical, St. Louis, MO), the cells were incubated at 37°C with an agonist for 

15 min after preincubation with KRB for 15 min. For the antagonism study, 

dP[Tyr(Me)^]AVP (Sigma Chemical, St. Louis, MO), 4-0H-phenacetyl-D-Tyr(Me)-Phe-

Gln-Asn-Arg-Pro-Arg-NHz (CL-4-84), desGIy®d(CH2)5[Tyr(Et)2]AVP (WK-3-6), d(CH2)5[D-

Phe^, lle'*]-AVP (AO-2-44) (Dr. M. Manning, Toledo, OH) or cyclo-(L-Pro-D-2-naphthyl-

Ala-L-lle-D-pipecolic acid-L-pipecolic acid-D-His) (L-366,948) (Merck Research 

Laboratories, West Point, PA) was administered for 10 min before the administration of 

the agonist to ensure blockade of receptors. The concentration of glucagon in the 

media was measured by radioimmunoassay, following the procedures provided by Unco 

Research (St. Charles, MO). ^"1- glucagon was purchased from Unco Research. 

To calculate half-maximal effective concentration (ECgo) values of AVP and OT 

on glucagon release, near saturating concentrations of AVP at 10 ® M, OT at 10 ® M and 

d[3-D-Pal]VP at 10 ® M were set at 100%. The glucagon released by AVP (10'^°-10® 

M), OT (10"®-10"® M) or d[3-D-Pal]VP (10'®-10 ® M) was expressed as a percentage of 

the value of AVP (10 ® M), OT (10 ® M) or d[3-D-Pal]VP (10 ® M) group, respectively. 

To calculate half-maximal inhibitory concentration (IC50) values of the receptor 

antagonists on glucagon release, the concentration of AVP at 10'® M, OT at 3 x 10'^ M 

or d[3-D-Pal]VP at 10"^ M on glucagon release was set at 100%. The inhibitory effects 

of antagonists were expressed as the percentage of the control value of each agonist. 
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ECso and IC50 values were calculated using Pharmcals.bas software (Springer-Verlag, 

Berlin, NY). 

Statistical analyses 

All values were expressed as mean ± SE. Results were analyzed using ANOVA 

and Tukey's test was used for mean comparisons. The significance level was set at P 

< 0.05. 

RESULTS 

Effects of A VP, OT and d[D-3-PalJVP on glucagon release 

AVP (10®-10® M), OT (10 ®-10 ® M) and d[3-D-Pal]VP {10 ®-10® M) increased 

glucagon release from ln-R1-G9 cells in a concentration-dependent manner (Fig.1). 

AVP was "30-fold more potent than OT when EDgo values were compared (AVP: 5.0 ± 

0.6 nM vs. OT: 190.0 ± 20.0 nM). d[3-D-Pal]VP was " 10-fold less potent than AVP 

and ~4-fold more potent than OT when EC50 values were compared (AVP: 5.0 ± 0.6 

nM, OT: 190.0 ± 20.0 nM and d[3-D-Pal]VP: 52.0 ± 7.1 nM). AVP (10 ® M), OT (3 x 

10'^ M) and d[3-D-Pal]VP (10"' M) were used in the antagonism study because these 

concentrations of the peptides caused submaximal increases in glucagon release. 

Effects of A VP and OT receptor antagonists on A VP- and OT-induced glucagon release 

L-366,984 (10 ® M), a highly selective OT receptor antagonist (20), failed to 

block AVP (10 ® M)- and OT (3 x 10'^ M)-induced glucagon release, which were 98.2 ± 

1.1 %, and 99.3 ±0.9 %, respectively (n = 3). This receptor antagonist, however, at 

higher concentrations (10 ® and 10 '' M) inhibited AVP (10"® M)- and OT (3 x 10"' M)-

induced glucagon release by 14.1 + 8.7 %, 72.8 ± 8.7 % and 12.2 + 11.6 %, 63.1 ± 

8,9 %, respectively (n = 2) (Fig. 2A). WK 3-6 (10"® M), a highly potent Via and V2 

receptor antagonist (21), failed to inhibit the AVP- and OT-induced glucagon release, 

which were 97.0 ± 1.7 % and 96.2 ± 2.7 %, respectively (n = 3). The higher 
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concentrations of WK 3-6 (10'® and 10 '^ IVl) caused 26.1 ± 3.0 % and 70.5 ± 2.6 % 

inhibition of AVP (10® M)-induced glucagon release (n = 2) (Fig. 2B). The 10 ® and 

10"^ M of WK 3-6 caused 35.0 ± 4.6 % and 82.1 ± 7.1 % inhibition of OT (3 x 10"^ M)-

induced glucagon release (n =2) (Fig. 2B). AO-2-44 {10 ®-10® M), a Vj/ViaA/it 

receptor antagonist (21), inhibited AVP (10 ® M)- and OT (3 x 10'^ M)-induced glucagon 

release in a concentration-dependent manner (n = 3) (Fig. 2 C). dP[Tyr{Me)^]AVP (10" 

®-10® M), an antagonist with potent Vib and Vij receptor blocking activities (18), 

caused a concentration-dependent inhibition of AVP (10 ® M) and OT (3 x 10'^ M)-

induced glucagon release (n = 3) (Fig. 2D). In addition, CL-4-84 (10"®-10 ® M), a highly 

potent Via and Vib receptor antagonist (22) also dose-dependently inhibited AVP- and 

OT-induced glucagon release (n = 3) (Fig. 2E). The order of antagonistic potency on 

AVP- and OT-induced glucagon release was: CL-4-84 » dP[Tyr(Me)^]AVP « AO-2-44 > 

WK 3-6 > L366,948, when IC50 values were compared (Table 1). None of the 

aiitagonists at the concentrations studied changed glucagon release by themselves 

(data not shown). 

Effects of A VP and OT receptor antagonists on d[3-D-Pal]VP-induced glucagon release 

dP[Tyr(Me)2]AVP (10®-10® M) and CL-4-84 (10®-10® M) caused a 

concentration-dependent inhibition of d[3-D-Pal]VP (10'^ IVI)-induced glucagon release 

(Fig. 3A and Fig. 3B), whereas WK 3-6 (10® M) and L-366,948 (10® M) failed to do so 

(n =3, data not shown). 

DISCUSSION 

Vib receptors, as we conclude, most likely mediate AVP and OT-evoked 

glucagon release from ln-R1-G9 cells and are similar to those mediating ACTH release 

from rat adenohypophysis (10) and catecholamine release from rat adrenal medulla 

(12). We have demonstrated that: 1) AVP was ~30-fold more potent than OT in 

increasing glucagon release, and 2) the order of potency of antagonists on AVP- and 

OT-induced glucagon release was estimated as: CL-4-84 « dP[Tyr(Me)^]AVP » AO-2-44 

> WK 3-6 > L366,948. 
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L-366,948 is a highly specific antagonist for OT receptors. It is >400 times 

more selective for OT receptors than and V2 receptors (20). WK 3-6 is a highly 

potent Via (pAa = 8.17) and V2 receptor (pAz = 7.75) antagonist (21). AO-2-44 is a 

potent Va/Via/Vb receptor antagonist, and is -35 times less potent for binding V,a 

receptors than WK 3-6, but is ~350 times more potent for binding Vi^ receptors than 

WK3-6 (21). CL-4-84 has a high antivasopressor potency (anti-Vig, pAa = 8.74) (24), 

which is similar to WK-3-6 (21). However, it also has high affinity for Vib receptors (Kj 

= 2.2 ± 0.1 nM) (22). dP[Tyr(Me)^]AVP is a highly potent Vu, receptor antagonist, but 

it also blocks Via receptors. However, dP[Tyr(Me)^]AVP has the highest V^b receptor 

blocking activity among a group of receptor antagonists studied on AVP- and OT-

induced ACTH release (10, 17, 18) and insulin release (13, 18). Therefore, the rank 

order of potency for these receptor antagonists on Vib receptors is estimated as CL-4-

84 w dP[Tyr(Me)^]AVP « AO-2-44 > WK 3-6 > L366,948, which is consistent with our 

data on AVP- and OT-induced glucagon release. Although, we stated that WK 3-6 and 

L366,948 are specific antagonists for Vig/Vj receptors and OT receptors, respectively, 

extremely high concentrations of these antagonists (10 ® and lO "* M) may antagonize 

other receptor subtypes, including Vib. 

d[D-3-Pal]VP, a synthetic analog of vasopressin, is a highly specific agonist for 

Vib receptors. In the pituitary gland, the relative agonistic potency of this analog to 

AVP on Vib receptor is 1/36 (19). It is also a weak agonist at V2 receptors in the 

kidney, with a relative potency 1/381 that of AVP and a weak Via receptor antagonist 

for the vasoconstrictor response (pAj = 6.22) (19). In the present study, we found 

that d[D-3-Pal]VP caused an increase in glucagon release in a concentration-dependent 

manner and this effect was antagonized by dP[Tyr(Me)^]AVP, an antagonist with Vib 

receptor blocking activity. Other antagonists were not effective. 

We conclude that: 1) AVP and OT induce glucagon release from ln-R1-G9 cells 

by activating the same receptor subtype, probably Vib receptors, and 2) OT interacts 

with these receptors with a lower affinity or intrinsic activity. Because AVP and OT 

have similar structures, it is conceivable that OT may act on AVP receptors (Vib) 'to 

induce glucagon release from this clonal a-cell line. In addition, OT increases ACTH 

release from rat pituitary cells by activating Vib receptors, but not OT receptors (17). 

This is consistent with the previous work from our laboratory regarding OT-and AVP-
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induced insulin release (13). However, the OT-induced glucagon release is less than 

that of OT-induced insulin release. OT-induced insulin release is only 9-fold less potent 

than AVP (13), whereas it is 30-fold less potent than AVP-induced glucagon release. 

Since the AVP/OT analogs used in the present study have not been extensively 

characterized in the hamster cells, these conclusions can be drawn only if it is assumed 

that the behavior of receptors and these peptides in the hamster is similar to their 

behavior in other species (e.g., rats) which they have been fully characterized. 

The Vib receptors have been found in both pituitary (10, 11) and extrapituitary 

tissues (25), such as rat adrenal medulla (12) and pancreatic p-cells (13, 25). In fact, 

the mRNA for these receptors has been detected in both human and rat pancreata (25). 

We have evidence that Vib receptors may mediate the effect of AVP- and OT-induced 

glucagon release from the hamster a-cell line. We will further characterize these 

receptors in the pancreatic a-cells. Moreover, because a highly specific Vib receptor 

antagonist is still not available to characterize these receptors, a molecular biological 

approach is necessary to confirm the characterization of these receptors in a-cells. 
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FIG. 1. Effect of AVP (O), d[D-3-Pal]VP (A) and OT (•) on glucagon release. Values are 

mean ± SE; n = 3 cultures with quadruplicates. Static incubation was performed for 

15 min to determine glucagon release. The glucagon release of the control group in 

AVP, d[D-3-Pal]VP and OT experiments was 197.0 ± 14.7, 221.4 ± 11.3 and 212.6 + 

11.0 pg/well/15 min, respectively. 
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dP[Tyr(Me)2IAVP, LoglM) 

FIG. 2. Effect of L-366,948 (A), WK-3-6 (B), AO-2-44 (C), dP[Tyr{Me)']AVP (D) and 

CL-4-84 (E) on AVP- and OT-induced glucagon release. AVP 10 nM (o) and OT 300 nM 

{•). Static incubation was performed with AVP or OT for 15 nnin. The potential 

antagonist was given 10 min before and in the presence of an agonist. Values are mean 

± SE; n = 3 cultures with quadruplicates, except for 10 ® and 10'^ M which were n = 

2. *P < 0.05 vs. agonist control group (100%) at the corresponding concentration of 

the antagonist. 
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FIG. 3. Effect of dP[Tyr{Me)2]AVP (A) and CL-4-84 (B) on d[D-3-Pal]VP-induced 

glucagon release. The monolayer cells were treated with the agonist (100 nM) for 15 

min to determine glucagon release, which for the basal control group was 230.8 ± 14.2 

pg/well/15 min and d[D-3-Pal]VP treated group was 797.6 ± 17.9 pg/well/15 min. 

Values are mean ± SE; n = 3 cultures with quadruplicates. The antagonist was given 

10 min before and in the presence of the agonist. Values are mean ± SE; n = 3 

cultures with quadruplicates. *P < 0.05 vs. the agonist control group (100%) at the 

corresponding concentration of the antagonist. 
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Table 1 

IC50 of AVP and OT receptor antagonists on AVP- and OT-induced glucagon release. 

Antagonist AVP OT 

cyclo-(L-Pro-D-2-naphthyl-Ala-L-lle-D-

pipecolic acid-L-pipecolic acid-D-His) 55,053 ± 27,382 61,763 ± 26,241 

(L-366,948) 

desGly®d(CH2)5[Tyr(Et) WP IWK-3-6) 35,526 ± 6,139 21,255 ± 5,246 

d(CH2)5[D-Phe^ lle^]-AVP (AO-2-44) 42 ± 28 67 ± 11 

4-0H-Phenylacetyi-D-Tyr(Me)-Phe-Gln- 20 + 9 5 + 4 

Asn-Arg-Pro-Arg-NHj (CL-4-84) 

dP[Tyr{Me)2]AVP 29 + 4 62 ± 6 

Values are mean ± SE; n = 3 cultures with quadruplicates, except for 10 ® and 10'^ M 

which were n = 2. IC50, half-maximal inhibitory concentration (nM); AVP, arginine 

vasopressin; OT, oxytocin. 



www.manaraa.com

78 

CHAPTER IV MECHANISMS OF AVP-INDUCED GLUCAGON RELEASE IN 

CLONAL a-CELLS IN-R1-G9: INVOLVEMENT OF CA^^-DEPENDENT AND 

-INDEPENDENT PATHWAYS 

A paper submitted to British Journal of Pharmacology 

Sirintorn Yibchok-anun, Henrique Cheng, Ter-Hsin Chen & Walter H. Hsu 

ABSTRACT 

1 The mechanisms underlying AVP-induced increase in [Ca^^], and glucagon release in 

clonal a-cells ln-Rl-G9 were investigated. 

2 AVP increased [Ca^"^], and glucagon release in a concentration-dependent manner. In 

Ca^'^-containing medium, AVP increased [Ca^"^]! in a biphasic pattern; a peak followed 

by a sustained plateau. In Ca^"^-free medium, the Ca^^ response to AVP became 

monophasic with a lower amplitude and no plateau. Both the basal and AVP-induced 

glucagon releases were lower in the absence than in the presence of extracellular Ca^"^. 

When [Ca^"^]! was stringently deprived by BAPTA, a Ca^"^ chelator, AVP still 

significantly increased glucagon release. 

3 Pretreatment with pertussis toxin failed to alter the AVP-induced glucagon release or 

increase in [Ca^"^],. Thapsigargin, a microsomal Ca^"^ ATPase inhibitor, abolished both 

the Ca^^ peak and sustained plateau. 

4 AVP increased intracellular concentration of IP3. 

5 U-73122 (8 |iM), a phospholipase C inhibitor, abolished AVP-induced increases in 

[Ca^"^];, but only reduced AVP-induced glucagon release by 39 %. 

6 Pretreatment with PD 98,059, a MAPK kinase inhibitor, ACA, a phospholipaseAz 

inhibitor, or nimodipine, an L-type Ca^"^ channel blocker failed to alter AVP-induced 

glucagon release or increase in [Ca^'^]]. 

7 The results suggest that AVP causes glucagon release through both Ca^^-dependent 

and -independent pathways. For the Ca^'^-dependent pathway, the G, protein activates 

phospholipase C, which catalyzes the formation of IP3. IP3 induces Ca^"^ release from 
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the endoplasmic reticulum, which, in turn, triggers Ca^"^ influx. Both Ca^"*^ release and 

Ca^"^ influx contribute to AVP-induced glucagon release. 

INTRODUCTION 

Arginine vasopressin (AVP), a neurohypophysial nonapeptide hormone, is 

synthesized in supraoptic and paraventricular nuclei of the hypothalamus. After being 

synthesized, it is stored in neurosecretory granules and is released from the posterior 

pituitary gland (Russel et a!., 1990). AVP exerts a number of physiological roles in 

mammals; it plays a major role in regulating body fluid volume, osmolality and 

contributes to the maintenance of blood pressure. In addition, AVP induces 

glycogenolysis (Kirk et ai, 1979), proliferation of the pituitary gland (McNichol et a!., 

1990) and vascular smooth muscle cells (Sperti & Colucci, 1991), vasoconstriction 

(Fox eta!., 1987) and secretion of glucagon and insulin (Dunning eta!., 1984). 

AVP induces glucagon release from clonal a-cells (Yibchok-anun & Hsu, 1998) 

and rat pancreas (Yibchok-anun et a!., 1999) through Vie receptors in a concentration-

dependent manner. AVP at the concentrations existing in the plasma (3-30 pM) 

increases glucagon release from perfused rat pancreas, which suggests that AVP may 

physiologically regulate glucagon release (Yibchok-anun et a!., 1999). However, the 

mechanisms underlying AVP-induced glucagon release remain unknown. Typically, AVP 

activates V, receptors, which couple to Gq, and thus activate phospholipase C-p (PLC-

P), which in turn hydrolyzes phosphatidylinositol 4, 5-bisphosphate (PIP2) to DAG and 

IP3 (Thibonnier, 1992). DAG activates PKC, whereas IP3 promotes Ca^^ release from 

endoplasmic reticulum (ER), leading to an increase in [Ca^"^]i. The increase in [Ca^^]| 

induces Ca^^ influx through voltage-dependent (VDCC) and -independent Ca^"^ channels 

(Vice) (Chen eta!., 1994; Li eta!., 1992; Thorn etaL, 1991). 

In-R1-G9 cells are clonal glucagon-secreting cells derived from the hamster 

pancreatic islet (Takaki etaL, 1986). The synthesis and secretion of glucagon by In-

R1-G9 cells share the basic characteristics of a-cells of the endocrine pancreas 

(Rorsman et a!., 1991); for instance, glucagon secretion from these cells is stimulated 

by forskolin, arginine, and theophylline and is inhibited by somatostatin (Fehmann et a!., 
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1995). We therefore used this cell line as a model for the a-cell of the pancreatic islet 

to study the mechanisms underlying AVP-induced glucagon release. 

In this study, we found that AVP induced glucagon release via both Ca^"*"-

dependent and -independent pathways. For Ca^'^-dependent pathway, we used an 

aminosteroid 1-[6-[[17p-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1 H-

pyrrole,2,5-dione (U-73122), a PLC inhibitor, to determine whether AVP induces 

glucagon release through a PLC-dependent pathway. In addition, we determined if the 

VDCC mediated AVP-induced Ca^"^ influx by treating the cells with nimodipine, an L-

type VDCC inhibitor. 

MATERIALS AND METHODS 

Cell culture 

The hamster glucagonoma !n-R1-G9 cells were maintained in RPMI 1640 with 

10 % fetal bovine serum and aerated with 5% C02-95% air at 37°C. All experiments 

were performed using cells from passages 24-30. 

Glucagon release 

ln-R1-G9 cells were plated into Corning 24-well plates at 10® cells/well and were 

grown for 3-4 days. The culture medium was then removed and replaced with 

modified Krebs-Ringer bicarbonate buffer (KRB) containing (in mM): 136 NaCI, 4.8 KCI, 

2.5 CaClz, 1.2 KH2PO4, 1.2 MgS04, 5 NaHCOg, 10 HEPES, 1.67 glucose and 0.1% 

BSA, pH 7.4. For determination of the dose response to AVP, cells were incubated at 

37°C with AVP for 15 min after preincubation with KRB for 15 min. For Ca^'^-free 

experiments, cells were incubated at 37°C with AVP in Ca^^-free KRB containing 10 

pM EGTA for 15 min after preincubation with Ca^^-containing KRB for 15 min. The 

following drugs were used in the study: U-73122 was given 100 sec; N-(p-

amylcinnamoyl) anthranilic acid (ACA), a PLA2 Inhibitor, or nimodipine was given 5 min; 

PD 98,059, a MAPK kinase inhibitor, was given 30 min prior to the administration of 

AVP. 1,2-bis-(o-Aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester 
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(BAPTA-AM), an intracelluar Ca^"^ chelator, was given 30 min in Ca^'^-free KRB before 

the administration of AVP. Pertussis toxin (PTX) (100 ng/ml) was given 16 h before 

the experiment. The cells were then treated with AVP in KRB containing one of the 

antagonists, BAPTA-AM or PTX. The concentration of glucagon in the media was 

measured by radioimmunoassay (RIA), following the procedures provided by Linco 

Research Inc. 

Measurement of [Ca^^h in cell suspension 

20 X 10® cells were loaded with 2 |jM fura-2 acetoxymethyl ester (fura-2AM) in 

KRB for 30 min at 37°C. The loaded cells were centrifuged (300 xg, 2 min), then 

resuspended at a concentration of 2 x 10® cells/ml with KRB containing (in mM): 136 

NaCI, 4.8 KCI, 1.5 CaClz, 1.2 KH2PO4, 1.2 IVIgS04, 10 Hepes, 1.67 glucose and 0.1% 

BSA and kept at 24°C until use. The 340/380 nm fluorescence ratios were monitored 

by a SLM-8000 spectrofluorometer (SLM instruments, Urbana, IL). The Ca^'^-free 

environment was created by centrifugation (300 x g, 30 sec) and the cells were 

resuspended in the Ca^'^-free KRB. When needed, cells were pretreated with U-73122, 

4-OH-phenacetyl-D-Tyr(Me)-Phe-Gln-Asn-Arg-Pro-Arg-NH2 (CL-4-84), an antagonist with 

potent ViB blocking activity (Thibonnier et al., 1997), desGly®d(CH2)5[Tyr(Et)^]AVP (WK-

3-6), a V1A/V2 antagonist (Jard et al., 1986), ACA or nimodipine for 100 sec before the 

AVP application. The cells were pretreated with thapsigargin (TG) and PTX for 5 min, 

30 min and 2 h, respectively before [Ca^^li measurement. The [Ca^"^]i was calibrated as 

previously described (Hsu et. al., 1991). 

Measurement of IP3 

Intracellular IP3 was measured using a competitive radioreceptor-binding assay 

kit purchased from Dupont Co., Boston, MA. 2x10® cells in 1 ml of KRB were placed 

in polypropylene tubes and equilibrated in a shaking water bath at 37°C for 15 min. 

Incubation with AVP was terminated by adding ice-cold 20% (w/v) trichloroacetic acid 

in 15 sec. The concentration of IP3 was determined by following the instructions 

provided by the manufacturer. 
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Cyclic AMP (cAMP) measurement 

cAMP measurements were studied in tlie cultured cell monolayer under 

conditions similar to the glucagon release experiments. After treating the cells with 

AVP (1 fj.M) for 15 min, the ceils were scraped from the plates in 0.01 N HCI and 

incubated in a water bath at 75 °C for 20 min to heat-inactivate phosphodiesterase 

(PDE). After centrifugation, the cell extracts were neutralized by 0.01 N NaOH and 

resuspended in the assay buffer. The cAMP levels were determined using RIA as 

previously described (Richards et. a!., 1979). 

Drugs 

All reagents were from Sigma Chemical (St. Louis, MO), except the fura-2AM 

was from Molecular Probes (Eugene, OR), U-73122, PD 98,059 and BAPTA-AM were 

from Biomol Research Laboratory (Plymouth Meeting, PA) and ^"l-glucagon was from 

Linco Research Inc. (St. Charles, MO). 

Data and Statistics 

All values were presented as mean ± s.e. Results were analyzed using the SAS 

PROC MIXED procedure and a randomized block design. There were two factors, 

treatment and block. Individual mean comparisons were performed using the F test. 

The significance level was set at P < 0.05. 

RESULTS 

Effect of AVP on glucagon release and [Ca^""], increase in normal and Ca^^-deprived 

conditions 

AVP (1-1000 nM) increased glucagon release (Fig. 1A) and [Ca^^], (Fig. IB) in a 

concentration-dependent manner. Because AVP at 100 nM caused submaximal 

increases in glucagon release and [Ca^^]|, we chose this concentration to study the 

mechanisms underlying AVP-induced glucagon release and increases in [Ca^"^]!. AVP 

(100 nM) significantly increased glucagon release to "3 times of the basal control level 

in Ca^"^-containing medium. The concentration of glucagon release in the basal control 
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group was 505 ± 61 pg/well/15 min (n = 6 cultures with triplicates). The basal 

glucagon release was not significantly lower in Ca^'^-free medium (444 ±114 

pg/well/15 min, n = 6 cultures with triplicates) than in Ca^'^-containing medium. In 

Ca^"^-free medium, AVP (100 nM) increased glucagon release to 2.1 times of the basal 

control level (control = 444 ±114 pg/well/15 min; AVP = 938 ± 180 pg/well/15 min, 

n = 6 cultures with triplicates). In addition, although [Ca^"^]! was deprived by 

preincubating the cells in Ca^^-free medium containing 50 )j.M BAPTA-AM for 30 min, 

AVP still increased glucagon release to 1.6 times of the basal control level (control = 

866 ± 205 pg/well/ 15 min; BAPTA-AM + AVP = 1419 ± 45 pg/well/15 min, n = 6 

cultures with triplicates). BAPTA-AM alone did not significantly change glucagon 

release (control = 505 ± 61 pg/well/ 15 min; BAPTA-AM = 866 ± 205 pg/well/15 min, 

n = 6 cultures with triplicates) (Fig. 2). 

To confirm whether the [Ca^^]| was deprived after pretreating the cells with 50 

jaM BAPTA-AM in Ca^^-free medium for 30 min, we investigated its effect on AVP-, 

bradykinin-, ionomycin- and TG-induced [Ca^"^]! increases. After the basal [Ca^^]; was 

lowered by BAPTA to < 25 nM, none of the above agonists increased [Ca^"^], under this 

condition (data not shown). 

The basal [Ca^^], in ln-R1-G9 cells was 97 ± 4 nM (n = 20). AVP (1-1000 nM) 

increased [Ca^"^], in a concentration-dependent manner and in a biphasic pattern; a peak 

followed by a sustained plateau (Fig. 3B). The peak usually reached within 30 sec and 

gradually decreased toward the baseline for over 4 min (the sustained plateau). To 

determine whether the Ca^"^ peak was due to the release of Ca^^ from the intracellular 

Ca^"^ stores and the sustained plateau was due to Ca^"^ influx, we measured [Ca^^lj in 

Ca^*-free KRB supplemented with 10 fiM EGTA. The basal [Ca^^Jj in Ca^'^-free/EGTA 

KRB (75 ± 3 nM, n = 20) was lower than that in Ca^'*^-containing KRB (97 ± 4 nM, n 

= 20). In the absence of extracellular Ca^"^, AVP (1-1000 nM) evoked only a Ca^^ 

peak (without the sustained plateau) in a concentration-dependent manner as well; 

however the amplitude was smaller than that induced by AVP in the presence of 

extracellular Ca^"^ (Fig. 3). 
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Effects of AVP receptor antagonists on ICa^*]-, increase 

AVP increases glucagon release from ln-R1-G9 cells (Yibchok-anun & Hsu, 

1998) and perfused rat pancreas (Yibchok-anun et a!., 1999) by activating Vib 

receptors. To study if AVP-induced [Ca^^], increase is also mediated by Vie receptors, 

we pretreated the cells with different AVP receptor antagonists for 100 sec before the 

application of AVP (100 nM). CL-4-84 (0.1 nM-100 nM), a Vi^/Vib receptor antagonist 

(Thibonnier et a!., 1997), inhibited AVP-induced [Ca^"^], increase in a concentration-

dependent manner (Fig. 4). CL-4-84 at the highest concentration studied (100 nM) 

abolished the AVP-induced rise in [Ca^"^]!. IC50 of CL-4-84 was 2 ± 0.5 nM. WK-3-6 (1 

^M), a potent Vi^/Vz receptor antagonist (Jard et a/., 1986), failed to block AVP-

induced [Ca^^li increase (data not shown). Neither CL-4-84 nor WK-3-6 alone 

significantly changed basal [Ca^^], (data not shown). 

Effects of PTX and U-73122 on A VP-induced glucagon release and [Ca^'^J, increase 

To determine whether AVP-induced increases in glucagon release and [Ca^"^]| are 

mediated through PTX-sensitive G protein and PLC, PTX and U-73122 were used to 

antagonize the effect of AVP. Pretreatment with PTX (100 ng/ml) for 16 and 2 h 

failed to inhibit either AVP (100 nM)-induced glucagon release (AVP = 3,515 ± 290 

pg/well/15 min; PTX + AVP = 3,446 ± 341 pg/welI/15min, n = 3 cultures with 

quadruplicates; P > 0.05) or an increase in [Ca^"*"]! (AVP = 194 ± 22 nM; PTX + AVP 

= 260 ± 39 nM, n = 4; P > 0.05) (Fig. 5A), respectively. PTX (100 ng/ml) alone did 

not significantly change glucagon release (control = 1,681 ±182 pg/well/15 min; PTX 

= 1,276 ± 139 pg/weil/15 min, n = 3 cultures with quadruplicates) or [Ca^'*"]] (control 

= 126 ± 15 nM; PTX = 167 + 27 nM, n = 4). U-73122 (2, 4 and 8 ^iM) inhibited 

AVP-induced [Ca^"^]| increase in a concentration-dependent manner (Fig. 6A). At the 

highest concentration studied (8 |j.M), U-73122 abolished AVP-induced the rise in 

[Ca^"^]i, but only reduced AVP-induced glucagon release by 39 % (Fig. 6B). The lower 

concentrations of U-73122 (2 and 4 |i.M) partially inhibited AVP-induced [Ca^^]| 

increase, but did not reduce AVP-induced glucagon release. U-73122 alone did not 

change ICa^"^], until 8 jxM was applied, which increased [Ca^^li by " 15 %, and then 

gradually returned to the basal level within 100 sec. To determine if U-73122 was 



www.manaraa.com

85 

specific to AVP-induced [Ca^"^], increase, ionomycin (300 nM), a Ca^"^ ionophore, was 

used for this purpose. Ionomycin elicited a biphasic rise in [Ca^^lj with a pattern similar 

to that induced by AVP (100 nM). U-73122 (8 nM) failed to inhibit ionomycin-induced 

rise in [Ca^^Jj (ionomycin = 244 ± 41 nM; U73122 + ionomycin = 300 ± 34 nM, n = 

4; P > 0.05) (Fig. 5B). 

Effects of thapsigargin (TG) and nimodipine on A VP-induced glucagon release and 

[Ca^^Ji increase 

We next hypothesized that AVP increases [Ca^^lj by inducing Ca^"^ release from 

ER, which in turn increases Ca^^ influx. We depleted intracellular Ca^* stores of In-RI-

G9 cells by pretreating the cells with 1 |j.M TG, a microsomal Ca^^-ATPase inhibitor 

(Thastrup et. a!., 1990), for 30 min, which abolished both AVP-induced Ca^^ release 

and influx (Fig. 5C). The [Ca^^]| after TG treatment was 129 ± 19 nM (n = 4). To 

investigate if the AVP-induced Ca^"^ influx was attributable to the opening of VDCCs, 

we pretreated ln-R1-G9 cells with 1 |4.M nimodipine, an L-type VDCC blocker, for 100 

sec. Nimodipine failed to inhibit AVP-induced glucagon release (basal = 916 ± 182 

pg/well/15 min; AVP = 2,080 ± 535 pg/well/15 min; nimodipine = 914 ±215 

pg/well/15 min; nimodipine + AVP = 2,333 ± 806 pg/well/15 min, n = 3 cultures with 

quadruplicates) or [Ca^"^], increase (Fig. 5D). 

Failure of ACA and PD 98059 to affect AVP-induced glucagon release 

Since AVP was found to increase glucagon release via a PLC-independent 

pathway, we determined whether PLAj and/or MAPK were involved in this pathway by 

pretreating the cells with 1 |j,M ACA, a PLAj inhibitor, or 30 (iM PD 98,059, a MAPK 

kinase inhibitor. ACA failed to alter the effect of AVP-induced glucagon release (basal 

= 311 ±68 pg/well/15 min; AVP = 1,125 ± 26 pg/well/15 min; ACA = 292 ± 55 

pg/well/15 min; ACA-l-AVP = 1,173 ± 83 pg/well/15 min, n = 3 cultures with 

quadruplicates). PD 98,059 also failed to inhibit AVP-induced glucagon release (basal 

= 490 ±153 pg/well/15 min; AVP = 1,538 ± 298 pg/well/15 min; PD = 570 ± 157 

pg/well/15 min; PD 98,059-I-AVP = 1,632 ± 353 pg/well/15 min, n = 3 cultures with 

quadruplicates). 
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Effects of A VP on intracellular IP3 and cyclic AMP concentrations 

To confirm whether AVP induces glucagon release and increase through 

PLC-IP3 system, but not adenylyl cyclase-cAMP system, we measured the AVP-induced 

changes in the intracellular concentration of IP3 and cyclic-AMP. AVP significantly 

increased intracellular IP3 concentration by 147 % (control = 16 ± 4 pmol/2 million 

cells; AVP (100 nM) = 39 ± 4 pmol/2 million cells, n = 5; P < 0.05). AVP failed to 

change intracellular cyclic-AMP concentrations (control = 3.6 ± 0.2 pmol/well/15 min; 

AVP (1 ^iM) = 3.8 ± 0.2 pmol/well, n = 4; P > 0.05). 

DISCUSSION 

Results from the present study suggest that AVP induces increases in [Ca^"^]! in 

in-R1-G9 by activating V,s receptors, because this effect of AVP was inhibited by CL-4-

84, a Via/Vib receptor antagonist (Thibonnier etal., 1997), but not by WK 3-6, a highly 

potent Via and V2 receptor antagonist (Jard etal., 1986). This finding is consistent 

with our previous ones in which AVP induced glucagon release from ln-R1-G9 (Yibchok-

anun & Hsu, 1998) and perfused rat pancreas (Yibchok-anun et al., 1999) by activating 

ViBreceptors. Unfortunately, no specific Vie receptor antagonists are available yet for 

the characterization of these receptors. A molecular biological approach is warranted 

to confirm the characterization of Vie receptors in a-cells. 

The ViB receptor has seven transmembrane-binding domains, and is coupled to a 

PTX-insensitive G-protein, probably Gp (Thibonnier et al., 1993). In this study, we 

found that PTX (100 ng ml'M failed to inhibit either AVP-induced glucagon release or 

[Ca^"^], increase. These results suggest that in ln-R1-G9 cells, V,b receptors are coupled 

to Gq, which is a PTX-insensitive G-protein, thereby increasing [Ca^^li. The increase in 

[Ca^"^]! contributes to glucagon release. 

The activation of PLC via Gq is responsible for the hydrolysis of PIP2 into DAG and 

IP3, which causes Ca^"^ release from the ER. In this study, since AVP increased IP3 

formation and it had no effect on cAMP production, the activation of PLC-P-IP3 system 

should be one of the signal transduction pathways through which AVP induces 
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glucagon release. In addition, we found that 8 jiM U-73122, the specific PLC inhibitor, 

abolished AVP-induced increase and reduced AVP-induced glucagon release. 

These findings confirm that AVP activates PLC-p to increase IP3 production, leading to 

the elevations of [Ca^^Jjand glucagon release. 

An increase of [Ca^"^], frequently triggers exocytosis (Wollheim & Pozzan, 1984; Li 

eta!., 1992; Tse et a!., 1993; Gromada et a!., 1997). Ca^^ oscillation is the 

pacemaker of pulsatile glucagon release in a-cells (Bode et a!., 1994). Thus, Ca^"^ is 

hypothesized to be a major signal for glucagon release in ln-R1-G9 cells. AVP induced 

[Ca^^li increase in ln-R1-G9 cells in a biphasic pattern; a peak followed by a sustained 

plateau. In Ca^^-free experiments, AVP only evoked a Ca^^ peak without a sustained 

phase. The Ca^^ peak evoked by AVP in the absence of extracellular Ca^^ was lower 

than in the presence of extracellular Ca^^. These results suggest that the Ca^"^ peak 

evoked by AVP is partly due to the release from intracellular stores and to the influx, 

whereas the sustained plateau is attributed to an increase in Ca^^ influx. When the 

intracellular Ca^^ stores were depleted by TG, a microsomal Ca^^-ATPase inhibitor, the 

AVP-induced [Ca^"*"]! increase including the sustained phase was totally abolished. This 

finding suggests that the AVP-induced Ca^"^ influx depends on AVP-induced Ca^"^ 

release. The involvement of Ca^"^-channels was further studied. Nimodipine did not 

alter AVP-induced glucagon release or [Ca^"^], increase. Thus, the AVP-induced Ca^"^ 

influx was not mediated through L-type VDCCs. These results are consistent with 

those of Bode et at. (1994) in which TG and LI-73122 inhibited the spontaneous Ca^^ 

oscillation in single ln-R1-G9 cells, but the L-type VDCC antagonists verapamil and 

nifedipine did not. In contrast to a-cells, AVP induces Ca^'*^ influx in clonal (3-cells 

RINm5F partly by the opening of L-types VDCCs (Chen et aL, 1994; Li et a!., 1992). 

The increase in [Ca^^], from both Ca^^ release and influx may contribute to 

glucagon release, because AVP was still able to increase glucagon release in the 

absence of extracellular Ca^^. However, both basal and AVP-induced glucagon 

releases were lower in the absence than in the presence of extracellular Ca^^. More 

interestingly, AVP increased glucagon release under stringent Ca^"^ deprivation, which 

was obtained by pretreatment of the cells with 50 |a.M BAPTA in Ca^^-free KRB. This 
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result suggests the existence of a Ca^"^-independent pathway of AVP-induced glucagon 

release. 

U-73122 has been shown to inhibit PLC-mediated events in a variety of cells, for 

example, human neuroblastoma cells (Thompson etaL, 1991) and erythroleukemia cells 

(Wu et a!., 1992), human neutrophils and platelets (Bleasdale et al., 1990), GH3 rat 

pituitary cells (Smallridge et a!., 1992), rat gonadotropic cells (Hawes eta!., 1992), rat 

hepatocytes (Kimura & Ogihara, 1997), porcine kidney cells (Dibas et a!., 1997), rat 

pancreatic acinar cells (Yule & Williams, 1992) and a clonal p-cell line, RINm5F (Chen et 

a!., 1994; Yang etaL, 1997). In addition, U-73122 was used to block the formation of 

IPs and DAG in many different cell preparations (Bleasdale & Fisher, 1993}. In ln-R1-G9 

cells, U-73122 inhibited AVP-induced [Ca^"^]i increase in a concentration-dependent 

manner, but had a much smaller impact on AVP-induced glucagon release. For 

instance, U-73122 at 8 abolished the effect of AVP-induced [Ca^"^]! increase, but 

only reduced AVP-induced glucagon release by 39 %. U-73122 at 4 (xM inhibited AVP-

induced [Ca^^li increase by 50 %, but had no effect on AVP-induced glucagon release. 

This finding is consistent with that of Chen eta/. (1994) in which U-73122 inhibited 

AVP-induced increase in [Ca^"^], much greater than the increase in insulin secretion. 

The effect of U-73122 was highly specific to PLC because it failed to alter ionomycin-

induced increase in [Ca^^],. lonomycin, a Ca^"^ ionophore, increases [Ca^'*'], by 

promoting Ca^"^ release from intracellular stores and Ca^^ influx in HIT cells (Swope & 

Schonbrunn, 1988) and oocytes of Xenopus laevis (Yoshida & Plant, 1992) without the 

involvement of a G protein. In addition, a remarkable phenomenon observed in the 

present study was that AVP still stimulated glucagon release after AVP-induced [Ca^^], 

increase was abolished. Together, these results strongly suggest that AVP-induced 

glucagon release involves a mechanism that is independent of an elevation of [Ca^"^!! or 

an activation of PLC-p. This may be due to multiple signal transduction pathways 

involved the Vib receptor-mediated hormone secretion (Thibonnier etal., 1997). 

In a smooth muscle cell line Avrg, V, receptors are coupled to several signaling 

pathways including PLC, PLA2 and PLD (Thibonnier et aL, 1991). AVP stimulates 

secretion of endothelin-1 and prostanoids from human brain endothelial cells by a 

receptor-mediated activation of PLC and PLA2 (Spatz et at., 1994). However, in our 

study, ACA (1 p.M), a PLA2 inhibitor (Konrad et a!., 1992), failed to affect AVP-induced 
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glucagon release in ln-R1-G9 cells, which suggests that PLAz is not involved in AVP-

induced glucagon release. In CHO-V3 cells, Vie receptors couple to p44/p42 MAPKs 

(Thibonnier eta!., 1997). However, AVP-induced glucagon release should not involve 

the activation of p44/p42 MAPKs, because PD 98,059 failed to prevent AVP-induced 

glucagon release. 

AVP activates phospolipase D (PLD) in rat Leydig (Vinggaard & Hansen, 1991) 

and glonnerular mesangial cells (Kusaka, etal., 1996). Activation of PLD leads to 

phosphatidic acid (PA) formation, stimulating insulin release (Metz & Dunlop, 1990). 

We found that PLD from Streptomyces sp. increased glucagon release under both 

normal and Ca^"^-deprived condition (unpublished data). Carbobenzyloxy-Ieucine-

tyrosine-chloromethylketone (zLYCK), an inhibitor of PLD (Kusaka, et a/., 1996), 

significantly inhibited AVP-induced glucagon release (unpublished data), in addition, a 

pseudosubstrate peptide inhibitor specific for PKC-C and PKC-A, inhibited the AVP-

induced glucagon release (unpublished results). PA and DAG (derived from PA via PLD) 

can activate PKC (Ando eta/., 1989; Dunlop & Larkins, 1985). It is likely that 

activation of PLD, leading to activation of PKC-^ and/or PKC-A,, may be involved in the 

PLC-independent mechanism of AVP-induced glucagon release. Activation of PLC 

requires Ca^'^ (Chaudry & Rubin, 1990; Gardner, 1989); thus the PLC-independent 

pathway may be one of the Ca^^-independent pathways. The G protein-coupled PLD 

pathway in rat myocardium is both Ca^^-dependent and -independent (Lindmar & 

Loffelholz, 1998). However, whether PLD plays a role in the Ca^"^-independent 

pathway of AVP-induced glucagon release remains to be determined. 

Another possibility is that AVP acts independently of Ca^^ at a distal site to 

trigger exocytosis. This would be similar to carbachol-induced insulin release in 

RINm5F cells, in which carbachol may stimulate insulin release by acting at a site 

beyond the point of increased [Ca^"^], (Tang et. a!, 1995). Although U-73122 (8 |a.M) 

abolished AVP-induced [Ca^"^], increase, small increases in [Ca^^]i at the level close to 

secretory granules might not have been detected by our method. These small increases 

in [Ca^"^]] might have triggered glucagon release. Further work is needed to identify the 

other pathways, particularly the Ca'^-independent ones, which are coupled to AVP-

induced glucagon release. 
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In summary, AVP increased [Ca^^], probably through Gq, which is a PTX-

insensitive G protein. U-73122 inhibited AVP-induced [Ca^"^]! increase in a 

concentration-dependent manner, but only partially antagonized AVP-induced glucagon 

release. We conclude that, in ln-R1-G9 cells, AVP induces glucagon release through 

multiple signaling pathways that are both Ca^^-dependent and -independent. For the 

Ca^^- dependent pathway, G, activates PLC, which promotes the formation of IP3 and 

DAG. IP3 stimulates Ca^"^ release from the ER, which in turn triggers Ca^^ influx via 

non-L-type Ca^"^ channels. Both Ca^^ release and Ca^"^ influx contribute to AVP-

induced glucagon release. The Ca^^-independent pathway for AVP-induced glucagon 

release is not well-understood and needs further investigation. 
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Fig. 1. Effects of AVP on glucagon release (A) and [Ca^^l] increase (B) in ln-R1-G9 cells. 

In A), the basal [Ca^^li was 97 ± 4 nM. Values are mean ± s.e. (n = 4). In B), static 

incubation was performed for 15 min to determine glucagon release. The concentration 

of glucagon release in the basal control group was 1,184 ± 84 pg/well/15 min. Values 

are mean ± s.e. (n = 3 cultures with quadruplicates). * P < 0.05, compared with the 

control group. 
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Fig. 2. Effects of AVP (100 nIVI) on glucagon release in Ca^'^-containing, Ca^'^-free 

media and 50 )liM BAPTA-AM in Ca^^-free media. BAPTA-AM in Ca^^-free media was 

given 30 min before the administration of AVP. Static incubation was performed for 15 

min to determine the glucagon release. The concentration of glucagon release in the 

basal control group was 505 ± 61 pg/well/15 min. Values are mean ± SE (n = 6 

cultures with quadruplicates). * P < 0.05, compared with the basal control group at 

the [Ca^^lo of 2.5 mM. 
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84 was given 100 sec before the administration of AVP. Values are mean ± SE (n = 

4). * P < 0.05, compared with the AVP control group, which had a maximal [Ca^^]| 

increase of 188 ± 11 nM 
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Fig. 5. Effects of AVP and ionomycin on [Ca^"^], increase in ln-R1-G9 cells. A) Effect of 

PTX on AVP-induced [Ca^"^]! increase. Curve a shows data of AVP (100 nM) alone as a 

control; curve b shows the effect of PTX pretreatment (100 ng nnrM for 2 h before AVP 

administration. B) Effects of U-73122 on ionomycin-induced [Ca^"^], increase. Curve a 

shows data of ionomycin (300 nM) alone as a control; curve b shows the effect of U-

73122 (8 )uM) pretreatment for 100 sec before ionomycin administration. C) Effect of 

TG on AVP-induced [Ca^^li increase. Curve a shows data of AVP (100 nM) alone as a 

control; curve b shows the effect of TG pretreatment (1 |a.M) for 30 min before AVP 

administration. D) Nimodipine did not affect AVP-induced [Ca^"^]! increase. Curve a 

shows data of AVP (100 nM) alone as a control; curve b shows the effect of 

nimodipine pretreatment (1 ^iM) for 100 sec before AVP administration. Arrow 

indicates AVP or ionomycin administration. Data shown are representative of 4 

experiments. 



www.manaraa.com

101 

A 
100 r 

U-73122 (^iM) 

Fig. 6. Effects of U-73122 on AVP-induced maximal [Ca^^^lj increase (A) and glucagon 

release (B) in ln-R1-G9 cells. U-73122 was given 100 sec before AVP (100 nM). 

Values are mean ± SE (n = 4 for [Ca^"*"]! experiments and n = 3 cultures with 

quadruplicates for secretion). * P < 0.05, compared with AVP (100 nM) alone as the 

control group. 
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CHAPTER V PROTEIN KINASE C ATTENUATES ARGININE VASOPRESSIN-

INDUCED INCREASES IN IP3 AND [CA^"^], IN CLONAL a-CELLS IN-R1-G9 

A paper submitted to European Journal of Pharmacology 

Sirintorn Yibchok-anun, Henrique Cheng, Ter-Hsin Chen, Walter H. Hsu 

ABSTRACT 

AVP (100 nM) increased [Ca^"^], and inositol 1,4,5 trisphosphate {IP3) production 

in clonal a-cell line ln-R1-G9. PKC activators phorbol 12-myrlstate 13-acetate (PMA) 

and 1-oleoyl-2-acetyl-sn-glycerol (OAG) antagonized, whereas Ro 31-8220, a PKC 

inhibitor, potentiated AVP-induced increase in IP3 production and [Ca^"*"],. The 

potentiation by Ro 31-8220 was decreased by SKF 96365, a receptor-operated Ca^"^ 

channel (ROC) inhibitor, but not by nimodipine, a voltage-dependent Ca^"^ channel 

inhibitor. In addition, Ro 31-8220 blocked the effects of PMA and OAG on AVP-

induced increases in IP3 and [Ca^"^],. Down regulation of PKC by pretreatment with 

PMA for 72 h enhanced AVP-induced ICa^"^]! increase. We conclude that in ln-R1-G9 

cells, PKC exerts a negative feedback on AVP-induced increase in IP3 production, 

causing a decrease in Ca^"^ release and influx; the latter is mediated by ROC. 

INTRODUCTION 

PKC is a family of Ca^"^- and phospholipid-dependent enzymes that mediates a 

wide range of signal transduction processes. At least 11 PKC isozymes have been 

identified and divided into three classes based on different requirements for their 

activations (Nishizuka, 1986; Nishizuka, 1988; Housey et al., 1988; Persons et al., 

1988). The conventional isozymes (cPKCs) a, pi, pll, y are activated by Ca^^, 

negatively charged phospholipids, diacyl glycerol (DAG) or phorbol esters, whereas the 

novel isozymes (nPKCs) 5, s, r], 0, are Ca^^-independent (Hug and Sarre, 1993; 

Jaken, 1996; Johannes et al., 1994). The atypical isozymes (aPKCs) "kk and ^ are 
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insensitive to stimulation by , DAG or phorbol esters; however, they are activated 

by phosphoiipid-derived second messengers, such as IP3 (Jal<en, 1996; Weinstein, 

1990), phosphatidylserine (Nishizuka, 1992) and phosphatidic acid (Limatola et al., 

1994). Numerous PKC isozymes have been detected in pancreatic islets (Knutson and 

Hoenig, 1994). In addition, down-regulation of PKC by pretreating rat islets with PMA 

for 24 h leads to impairment of arginine-induced glucagon release, which suggests that 

PKC is present in the a-cells of the pancreatic islets (Bjaaland et al., 1988). 

PKC is activated by DAG, which is generated via breakdown of phosphoinositides 

by Ca^"^-mobilizing neurotransmitters and hormones such as acetylcholine, vasopressin, 

oxytocin and bombesin (Ashcroft, 1994). There is evidence that Ca^^ (Pipeleers et al., 

1985; Charles et al., 1987; Niki et al., 1986) and activation of PKC (Hii et al., 1986; 

Bjaaland et a!., 1988) are important in the regulation of glucagon release from a-cells. 

PMA, substituting in vitro for DAG that is one of the physiological activators for PKC, 

has been found to increase glucagon release (Hii et al., 1986; Niki et al., 1986), which 

suggests the participation of PKC in the regulation of glucagon release. 

AVP physiologically regulates glucagon release from the rat pancreas by activating Vib 

recepotrs (Yibchok-anun et al., 1999). The existence of high concentration of AVP in 

the pancreas (Amico et al., 1988) suggests a possible local action of this hormone. In 

addition, AVP induces an increase in [Ca^"^]! in hamster glucagonoma ln-R1-G9 cells in a 

biphasic pattern; a peak followed by a sustained phase (Yibchok-anun and Hsu, 1998). 

This effect is mediated by Vib receptors that couple to PTX-insensitive G protein, 

probably Gq. Activation of G, catalyzes PLC-p to increase the formation of DAG and 

IP3. DAG activates PKC and iPg promotes calcium release from the endoplasmic 

reticulum (ER), leading to an increase in [Ca^^]|, which stimulates glucagon release 

(Yibchok-anun and Hsu, 1998). However, it is not known if PKC has an impact on 

AVP-induced increases in the production of IP3 and [Ca^"^], that finally lead to glucagon 

release. 

It is a common practice to study the effect of enzymes by inhibiting or activating 

their activities. In the present study, we used Ro 31-8220, a bisindoylmaleimide PKC 

inhibitor, that is selective and specific for PKC isozymes (Davis et al., 1989) to 

elucidate the effect of PKC on AVP-induced increase in the production of IP3 and [Ca^"^]] 

from ln-R1-G9 cells. We also used PMA and OAG, a DAG analog, to activate PKC. In 
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addition, we induced down-regulation of PKC by a long-ternn PMA treatment to probe 

for the role of PKC on AVP-induced increases in [Ca^"^]j. 

AVP increases [Ca^"^], in a biphasic pattern, a peak followed by a sustained phase, 

and the latter suggests the involvement of Ca^^ influx (Yibchok-anun and Hsu, 1998). 

Thus, we used SKF 96365, a receptor-operated Ca^^ channel (ROC) blocker (Li at al., 

1997) and nimodipine, a voltage-dependent Ca^"^ channel (VDCC) blocker, to determine 

which type of Ca^^ channels contributes to the influx. Results of the present study 

suggest that PKC may exert a negative feedback on AVP-induced increase in IP3 

production, leading to an attenuation of Ca^^ release and influx; the latter is mediated 

by ROC. 

MATERIALS AND METHODS 

Cell culture 

The hamster glucagonoma in-R1-G9 cells were maintained in RPMI 1640 

(Sigma, St. Louis, MO) with 10 % fetal bovine serum (Sigma, St. Louis, MO) and 

aerated with 5% C02/95% air at 37°C. 

Measurement of in cell suspension 

20 X 10® cells were loaded with 2 |aM fura-2 acetoxymethyl ester (fura-2AM; 

Molecular probes, Eugene, OR) in KRB containing (in mM): 136 NaCI, 4.8 KCI, 1.5 

CaCIa, 1.2 KH2PO4, 1.2 MgS04, 10 Hepes, 1.67 glucose and 0.1% BSA for 30 min at 

37°C. The cells were then centrifuged (300 xg, 2 min) and resuspended at a 

concentration of 2 x 10® cells/ml with KRB and kept at 24°C until use. Fluorescence 

ratios of 340/380 nm were monitored by a SLM-8000 spectrofluorometer (SLM 

instruments. Urbane, IL). The Ca^^-free environment was created by centrifugation 

(300 x g, 30 sec) and cell resuspension in Ca^"^-free KRB supplemented with 10 |aM 

EGTA. Cells were pretreated with Ro 31-8220 (Roche Products Ltd., Hertfordshire, 

UK) for 30 min, PMA or OAG (Sigma Chemical, St. Louis, MO) for 10 min before the 

AVP or ionomycin (Sigma Chemical, St. Louis, MO) application. Cells also were 
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pretreated with SKF 96365 {Biomol Research, Plymouth Meeting, PA) for 10 min or 

nimodipine (Research Biochemicals International, Natick, MA) for 5 min in the presence 

of Ro 31-8220 prior to the AVP application. For down regulation of PKC, cells were 

treated with 200 nM PMA in culture media for 72 h, and resuspended in KRB 

containing 200 nM PMA during the experiment. The [Ca^^Jj was calibrated as 

previously described (Hsu et. al., 1991). 

Measurement of IP3 

intracellular IP3 was measured using a competitive radioreceptor-binding assay 

kit (Dupont Co., Boston, MA). 2x10® cells in 1 ml of KRB were placed in 

polypropylene tubes and equilibrated in a shaking water bath at 37°C for 15 min. The 

cells were pretreated with Ro 31-8220, OAG or PMA for 30, 10 and 10 min, 

respectively, before the application of AVP. Incubation with AVP was terminated by 

adding ice-cold 20% (w/v) trichloroacetic acid at 15 sec. The concentration of IP3 was 

determined according to the manufacturer instructions. 

Statistical analysis 

All values were presented as mean ± S.E.M. Results were analyzed using 

ANOVA and individual mean comparisons were made using Least Significant Difference 

test. The significance level was set at P < 0.05. 

RESULTS 

Effects of Ro 31-8220, OAG or PMA on AVP-induced IP3 production 

AVP (100 nM) increased IP3 production ~ 2 fold over the basal level. This 

concentration of AVP was used throughout the study. Ro 31-8220 (10 |.iM), a 

selective PKC inhibitor, significantly enhanced AVP-induced IP3 production. A 

membrane-permeable DAG analog, OAG (30 ^iM) totally abolished AVP-induced IP3 

production. In addition, the phorbol ester PMA (100 nM) significantly reduced AVP-

induced IP3 production. Ro 31-8220, OAG or PMA alone did not significantly change 

the IP3 content (Fig. 1). 
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Effects of Ro 31-8220 on A VP-induced [Ca^^h increase 

AVP increased [Ca^"^]! in a biphasic pattern; a pealc followed by a sustained 

phase in Ca^^-containing medium. Ro 31-8220 (10 |iM) alone did not change the basal 

[Ca^-^li (control = 108.3 ±10.1 nM; Ro 31-8220 = 105.7 ± 7.7 nM, n = 11). 

Pretreatment of the cells with Ro 31-8220 potentiated AVP-induced increases in both 

the maximal and sustained [Ca^"^], (Fig. 2A). 

In the absence of extracellular Ca^^, AVP evoked only a peak increase of [Ca^"^]i 

without the sustained phase which is due to the release from the ER (Yibchok-

anun and Hsu, 1998). Pretreatment with Ro 31-8220 (10 jiM) failed to enhance AVP-

induced ICa^*], increase (Fig. 2B). 

In our previous report, the Ca^"^ peak induced by AVP in ln-R1-G9 cells was 

attributable to the release from ER and to the influx, whereas the sustained phase was 

attributable to Ca^^ influx through Ca^"*" channels (Yibchok-anun and Hsu, 1998). To 

determine whether the potentiation of AVP-induced [Ca^"*^]! increase by Ro 31-8220 

was due to the sustained opening of Ca^^ channels and to determine which type of 

Ca^"*" channels was involved, SKF 96365 (0.3-30 p.M) or nimodipine (1 |iM) was 

applied. SKF 96365, an ROC blocker, inhibited Ca^'^ peak potentiated by Ro 31-8220 

in a concentration-dependent manner, and the highest concentration studied (30 jiM) 

significantly inhibited sustained phase (Table 1). Nimodipine, a VDCC blocker, did 

not significantly inhibit the Ro 31-8220-elicited potentiation (Table 1). 

Effects of OAG on A VP-induced [Ca^'^Ji increase 

OAG (30 |j.M) alone did not change the basal [Ca^^Ji (control = 115,2 ± 21.4 

nM; OAG = 113.1 ± 22.7 nM, n = 4). OAG pretreatment for 10 min significantly 

decreased AVP-induced [Ca^"^]: increase. In addition, pretreatment with Ro 31-8220 

(10 iliM) for 30 min abolished the inhibitory effect of OAG on AVP-induced [Ca^"^], 

increase and further enhanced the AVP-induced sustained phase of [Ca^"^]; increase 

(Fig. 3A). 

In the Ca^"^-free medium, OAG significantly decreased AVP-induced [Ca^"*"], 

increase (Fig. 3B). Although, Ro 31-8220 failed to enhance the effect of AVP in the 
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absence of extracellular Ca^"^ (Fig. 2B), it was still able to reverse the inhibitory effect 

of OAG on AVP-induced [Ca^"^]! increase (Fig. 3B). 

Effects of PMA on A VP-induced increase 

AVP-induced [Ca^^]| increase was inhibited by a 10-min treatment with PMA 

(0.1-100 nM) in a concentration-dependent manner (Table 2). At the highest 

concentration studied (100 nM), PMA abolished AVP-induced [Ca^^li increase both in 

the peak and sustained phase and this effect was blocked by the pretreatment with Ro-

31-8220 (10 ^iM) for 30 min (Fig. 4A). 

In the Ca^^-free medium, PMA (100 nM) still abolished the AVP-induced [Ca^^Ji 

increase. Again, Ro 31-8220 attenuated the inhibitory effect of PMA on AVP (Fig. 4B). 

Effects of AVP, Ro 31-8220 and OAG on [Ca^*]-, in cells pretreated with PMA for 72 h 

After a 72-h PMA (200 nM) treatment, both the peak and sustained intracellular 

Ca^^ increases induced by AVP became larger and lasted longer compared to those in 

PMA-untreated ceils (Fig. 5A). The AVP-induced [Ca^"^]; increases in PMA-pretreated 

cells were not altered by pretreating the cells with 10 fxM Ro 31-8220 (Fig. 58) or 30 

fiM OAG (Fig. 5C). The basal [Ca^"^]) were not different between the control and PMA-

treated cells (control = 144.5 ± 30.4 nM; PMA-treated cells = 148.1 ± 32.4 nM, n = 

4). 

Effects of Ro 31-8220, OAG and PMA on ionomycin-induced [Ca^*J,- increase 

To determine whether the effects of Ro 31-8220, OAG and PMA on PKC were 

specific to AVP-induced [Ca^"^]| increase, we investigated their effects on ionomycin 

(300 nM)-induced [Ca^"^]i increase. In Ca^^-containing medium, ionomycin induced a 

biphasic elevation of [Ca^"^]; with a pattern similar to that induced by AVP, but the 

sustained phase was greater than that induced by AVP. In addition, the sustained 

increase in [Ca^^], induced by ionomycin disappeared in the absence of extracellular 

Ca^"^ (data not shown). The pretreatment with 10 |.iM Ro 31-8220 (Fig. 6A), 30 |iM 

OAG (Fig 6B) or 100 nM PMA (Fig. 6C) did not affect ionomycin-induced [Ca^"^]! 

increase. The basal [Ca^"^]| after the pretreatments with the PKC inhibitor or activators 
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were not different from tiiose of untreated cells (control = 107.6 ± 11.4 nM; Ro 31-

8220 = 101.8 ± 9.9 nM; OAG = 104.5 ± 12 nM; PMA = 118 ± 16.9 nM, n = 5). 

DISCUSSION 

The present results showed that AVP increased IP3 production and in a 

clonal a-cell line ln-R1-G9. This study explored the role of PKC on AVP increased IP3 

production and [Ca^^],, and the results suggested that AVP activates PKC via DAG, 

which attenuates the AVP-induced increases in IPs production and [Ca^"^],. AVP 

induced a translocation of various PKC isozymes from cytosol to membrane in ln-R1-G9 

cells in the Western blot analysis (our unpublished data), which supports the notion that 

the AVP treatment activates PKC. In the present study, we demonstrated that the 

selective PKC inhibitor Ro 31-8220 potentiated AVP- induced IP3 production and [Ca^^li 

increases. Ro 31-8220, which is a derivative of a non-specific PKC Inhibitor 

staurosporine, has been developed as a potent and selective PKC inhibitor (Davis et al., 

1989), but much less potent inhibitor for cyclic AMP-dependent kinase (PKA) or 

Ca^'^/calmodulin-dependent kinase (Minichiello et al., 1999). This compound has been 

widely used to inhibit a number of PKC isozymes, including conventional, novel and 

atypical in different systems (Minichiello et al, 1999; Ison et al., 1993; Limatola et al., 

1994). Phorbol esters and DAG analogs have been used as tools to mimic the 

responses stimulated by physiological ligands, providing evidence to support the role of 

PKC in ligands-induced cellular responses (Wilkinson and Hallam, 1994). Our results 

showed that both PMA and OAG, which activate cPKCs and nPKCs, attenuated AVP-

induced IP3 production and [Ca^^li increases. The effects of PMA and OAG were 

specific for PKC activation because they were blocked by the pretreatment with Ro 31-

8220. 

Since PMA may exert some effects which are not pertinent to PKC activation, 

such as the stimulation of insulin release via membrane depolarization and [Ca^^], 

increase in RINmBF cells (Yada et al., 1989) and inhibition of phosphoinositide 

hydrolysis via targets other than PKC in the peripheral tissue of rat and chicken (Bhave, 

et al., 1990), we investigated the role of PKC on AVP-induced [Ca^^li increase after the 
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down-regulation of PKC. A long-term treatment with PMA, leading to PKC down 

regulation, is mostly due to the degradation of membrane-bound activated PKC by the 

proteolytic enzymes, for example, calpain (Kikkawa et a!., 1989; Kishimoto et al., 

1989). In this study, the intracellular Ca^^ response to AVP was clearly enhanced after 

the PKC down-regulation, which is consistent with the result of the Ro 31-8220 

experiment. This result can be explained by the elimination of the inhibitory effect of 

PKC on control cells. Ro 31-8220 and OAG failed to alter AVP-induced [Ca^^], increase 

after the down-regulation of PKC, suggesting a deficiency of PKC in these cells after a 

long-term treatment with PMA. 

The effects of Ro 31-8220, OAG and PMA were highly specific for the PLC-IP3 

system because they did not alter the ionomycin-induced [Ca^^], increase, lonomycin is 

a Ca^'^-ionophore that increases [Ca^"^], by promoting Ca^^ release and Ca^"^ influx 

without coupling to a G protein or generating IP3 production (Swope and Schonbrunn, 

1988; Yoshida and Plant, 1992; Teitelbaum and Berl, 1994). Our present findings 

strongly suggested that PKC negatively regulates AVP- induced IP3 production and 

[Ca^"^]! increases. Based on the specificity of OAG and PMA that can activate only 

cPKCs and nPKCs, it is likely that either or both groups of PKC isozymes may be 

involved in this aspect. Further studies are needed to determine which PKC isozymes 

are involved in the attenuation of these effects of AVP. 

Our findings are consistent with those in rat glomerulosa cells (Gallo-Payet et a!., 

1991) and vascular smooth muscle cells (Stassen et al., 1989), in which PKC plays a 

negative role in AVP-induced formation of inositol phosphate and [Ca^^li increase. 

Activation of PKC blocks the AVP-induced formation of inositol phosphate in rat 

pancreatic p-cells (Gao et al., 1994) and [Ca^^li increase in clonal p-cells HIT-T15 

(Hughes et al., 1992). PKC blocks the accumulation of inositol phosphate induced by 

high Ca^"^ (3 mM) in bovine parathyroid cells (Kifor et al., 1990) and inhibits PTH-

induced IP3 production and [Ca^^li increase in rat osteoblastic cells (Babich et al., 

1997). In addition, PMA completely inhibits PIP2 hydrolysis activated by carbachol in 

astrocytes from chicken embryo (Mangoura et al., 1995). These results suggest that 

PKC inhibits the activation of PLC-p. In addition, PKC might inhibit the substrate 

supply of PIP2 to decrease IP3 formation, but there is no evidence to support this 



www.manaraa.com

110 

hypothesis. Further work is needed to determine if PKC indeed inhibits the supply of 

PIP2. 

Although Ro 31-8220 failed to potentiate AVP-induced [Ca^^lj increase in the 

absence of extracellular [Ca^"^],, it was still able to counteract the inhibitory effect of 

OAG and PMA on AVP-induced changes. However, Ro 31-8220 no longer enhanced 

AVP-induced sustained phase seen in the presence of extracellular [Ca^^],. These 

results suggest that PKC reduces AVP-induced [Ca^^Ji increase partly via an inhibition 

of influx. Activation of PKC also inhibits Ca^^ signaling by reducing influx of Ca^^ 

into the (3-cells (Ashcroft, 1994). SKF 96365, an ROC inhibitor, but not nimodipine, a 

VDCC inhibitor, inhibited Ro 31-8220-potentiated AVP-induced Ca^"^ influx in a 

concentration-dependent manner. SKF 96365 (30 i^M) did not affect AVP-induced 

[Ca^"*"]! increase in the absence of Ro 31-8220 (data not shown). These results suggest 

that the PKC-attenuation of AVP-induced Ca^^-influx is mediated by the inactivation of 

ROCs, but not of VDCCs. This finding is different from what has been found in the 

mouse pancreatic p-cells, in which PKC inactivates VDCCs (Arkhammar et a!., 1994). 

Taken together, we conclude that PKC exhibited a negative feedback control via 

Vib receptors that couple to PLC-p to inhibit IP3 production induced by AVP, attenuating 

AVP-induced increase in Ca^^ release and influx. The attenuation of Ca^"^ influx is 

mediated by the closure of ROC. Since AVP physiologically regulates glucagon release 

from the rat pancreas (Yibchok-anun et al., 1999), this phenomenon might occur in a-

cells of the pancreatic islet. Further work in pancreatic islet is needed to prove or 

disprove this hypothesis. 
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TABLE 1 

Effects of SKF 96365 and nimodipine on Ro 31-8220-elicited potentiation of AVP-

induced [Ca^"^], increase 

[Ca2+]|, nM 

Treatment 
Basal Peak A i  Sustained 

phase 

A  2  

1. AVP 96 ± 1.7 183.2 ± 89.4 ± 97.6 ±5.7 3.7 ± 4.8 

9.2 10.2 

2. Ro 31-8220 + AVP 105.4 ± 245 ± 139.6 ± 162.8 ± 57.3 ± 

3.5 16.3 21.3" 2.5 4.5 = 

3. Ro 31-8220+ 0.3 ^iM 100.6 + 205.3 + 104.7 ± 155.5 ± 55 ±6 

SKF 96365 +AVP 7.2 26.9 22 12.2 

4. Ro 31-8220+ 3 |iM SKF 93.5 ± 184.1 ± 90.5 + 142 + 10.6 48.4 + 

96365 +AVP 6.5 18.3 15.3'' 7.1 

5. Ro 31-8220+ 30 |iM 114.2 ± 191.2± 77 + 132.8 ± 18.6 ±7" 

SKF 96365+AVP 7.4 17.1 10.8" 12.7 

6. Ro 31-8220+ 1 nM 97.4 ± 205.4 + 108 ± 154 ± 6.8 46.6 + 

nimodipine +AVP 6.7 13.3 8.4 5.3 

The values are means + S.E.M. (n = 4). The concentrations of AVP and Ro 31-8220 

used were 100 nM and 10 jaM, respectively. Ro 31-8220, SKF 96365 or nimodipine 

was given 30, 10 and 5 min, respectively before AVP administration. The sustained 

phase of [Ca^"^], increase was measured at 120s post-AVP administration. 

A  Peak - Basal; A  2 .  Sustained phase - Basal 

® P < 0.05, compare with treatment 1 in the same column. 

^ P < 0.05, compare with treatment 2 in the same column. 

® P < 0.05, compare with treatment 1 in the same column. 

P < 0.05, compare with treatment 2 in the same column. 
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TABLE 2 

Effects of PMA on AVP-induced [Ca^"^], increase 

[Ca^^],, nM 

Treatment 

Basal Peak Ai 
Sustained 

phase 
A2 

1. AVP 100.4 + 203.1 ± 102.7 ± 119.2± 18.8 + 

2.4 24 23 3.7 1.8 

2. PMA (0.1 nM)+AVP 106.4 ± 211 ± 104.6± 125.2 + 18.8 ± 

8.2 24.5 19.7 13.6 4.8 

3. PMA {1 nM) + AVP 98.8 ± 144.5 ± 45.7 ± 104.6 ± 5.8+3" 

2.4 6.5 6.4' 4.4 

4. PMA (10 nM)+AVP 109.3 + 129.2 ± 19.9± 116.3 ± 7.1 ±4" 

14.6 19.5 6.r 18.4 

5. PMA (100 nM) + AVP 109 ± 5.9 110.8 + 1.9 + 0.6" 112 + 5.2 3.1 ± 1" 

5.3 

The values are means ± S.E.M. (n = 4). The concentration of AVP used was 100 nM. 

PMA was given 10 min before AVP administration. The sustained phase of [Ca^"^]) 

increase was measured at 120s post-AVP administration. 

A Peak - Basal 

A 2' Sustained phase - Basal 

® P < 0.05, compare with treatment 1 in the same column. 

'' P < 0.05, compare with treatment 1 in the same column. 
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Fig.1. Effects of Ro 31-8220, OAG and PMA on AVP-induced IP3 production. Ro 31-

8220 (10 nM) was given 30 min and OAG (30 |iM) or PMA (0.1 ^iM) was given 10 min 

before the administration of AVP (100 nM). Values are mean ± S.E.M. (n = 5). *P < 

0.05, compared to the basal control group; " P < 0.05, compared to the AVP alone 

group. 
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Fig. 2. Effect of Ro 31-8220 on AVP-induced [Ca^^], increase in the presence (A) and 

absence (B) of extracellular Ca^"^. Curve a shows the data of AVP (100 nM) alone as a 

control; curve b shows the effect of Ro 31-8220 (10 jxM) pretreatment for 30 min 

before the AVP administration. Arrow indicates the AVP administration. Data shown 

are representative of 11 and 5 experiments for A and B, respectively. 
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Fig.3. Effect of OAG on AVP-induced [Ca^"^]! increase in the presence (A) and absence 

(B) of extracellular Ca^^. Curve a shows the data of AVP (100 nM) alone as a control; 

curve b shows the effect of the OAG (30 |j,M) pretreatment for 10 min before the AVP 

administration, and curve c shows the effect of Ro 31-8220 (10 )a.l\/l) pretreatment for 

30 min before the AVP administration on OAG-treated cells. Arrow indicates the AVP 

administration. Data shown are representative of 5 experiments. 
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Fig. 4. Effect of PMA on AVP-induced [Ca^'*'], increase in tlie presence (A) and absence 

(B) of extracellular Ca^*. Curve a shows the data of AVP (100 nM) alone as a control; 

curve b shows the effect of PMA (100 nM) pretreatment for 10 min before the AVP 

administration and curve c shows the effect of Ro 31-8220 (10 |a.M) pretreatment for 

30 min before the AVP administration on PMA-treated cells. Arrow indicates the AVP 

administration. Data shown are representative of 4 experiments. 
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Fig. 5. Effect of P!\/IA (200 nM) pretreatment for 72 h on AVP-induced [Ca^"^], increase 

(A). Curve a sliows the data of AVP (100 nIVI) in normal cells as a control; curve b 

shows the data of AVP (100 nM) in the PMA-pretreated cells. Effects of Ro 31-8220 

(B) and OAG (C) on AVP-induced [Ca^"^], increase in PMA-pretreated cells for 72 h. In 

panels B and C, curve a shows the data of AVP alone in PMA-pretreated cells as a 

control; curve b shows the effect of Ro 31-8220 (10 ^lM) (B) or OAG (30 i^M) (C) 

pretreatment for 30 and 10 min, respectively before the AVP administration in PMA-

pretreated cells. Arrow indicates the AVP administration. Data shown are 

representative of 4 experiments. 
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Fig. 6. Effects of Ro 31-8220 (A), OAG (B) and PMA (C) on ionomycin-induced [Ca^^li 

increase. Curve a shows the data of AVP (100 nM) alone as a control; curve b shows 

the effect of Ro 31-8220 (10 (aM), OAG (30 |.iM) or PMA (100 nM) pretreatment for 30 

and 10 min, respectively before the AVP administration. Arrow indicates the AVP 

administration. Data shown are representative of 4 experinnents. 
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CHAPTER VI NOVEL PROTEIN KINASE C ISOZYMES INHIBIT AND ATYPICAL 

PROTEIN KINASE C ISOZYMES STIMULATE ARGININE VASOPRESSIN-

INDUCED GLUCAGON RELEASE IN CLONAL a-CELL LINE IN-R1-G9 

A paper to be submitted to Diabetes 

Sirintorn Yibchok-anun, Henrique Cheng, Ehab A. Abu Baslia and Walter H. Hsu 

ABSTRACT 

We examined tine role of PKC isozymes on AVP-induced glucagon release. PMA 

and OAG, activators of cPKCs and nPKCs, antagonized AVP-induced glucagon release, 

whereas Ro 31-8220, a drug that inhibits all PKC isozymes, potentiated AVP-induced 

glucagon release. In addition, Ro 31-8220 blocked the effect of OAG and PMA on 

AVP-induced glucagon release. AVP-induced glucagon release was enhanced when 

cPKC and nPKC isozymes were down-regulated by pretreatment of the cells with PMA 

for 72 h. However, the cPKC inhibitors, CGP 53506, CGP 54345, LY 379196 and Go 

6976, as well as PKC 20-28 (Myr-Phe-Ala-Arg-Lys-Gly-Ala-Leu-Arg-GIn), a 

pseudosubstrate peptide for PKC-a and -(3, failed to affect the AVP-induced glucagon 

release, suggesting that cPKCs may not be involved in this release. In contrast, a 

pseudosubstrate peptide inhibitor specific for PKC-(^ and -X (Myr-Arg-Arg-Gly-Ala-Arg-

Arg-Trp-Arg-Lys) significantly reduced the AVP-induced glucagon release. The present 

findings suggest that nPKCs and aPKCs play inhibitory and stimulatory roles, 

respectively, on AVP-induced glucagon release from ln-Rl-G9 cells. 

INTRODUCTION 

PKC is a family of phospholipid dependent serine/threonine-specific protein 

kinases (1) which are classified into three groups: 1) the conventional (cPKCs) a, pi, pil, 

y; 2) the novel (nPKCs) 5, e, t], 0, p.; and 3) the atypical (aPKCs) Xli and The cPKCs 
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are activated by Ca^"^, negatively charged phospholipids, e.g. phosphatidylserine (PS), 

diacyl glycerol (DAG), and phorbol esters (2, 3). The nPKCs are activated by negatively 

charged phospholipids, DAG, and phorbol esters, but not Ca^"*" (2-5). The aPKCs are 

activated by negatively charged phospholipids, phosphatidic acid (PA) (6), and inositol 

1,4,5-trisphosphate (IP3) (3, 7), and are insensitive to Ca^"*", DAG or phorbol esters (5). 

In pancreatic a-cells (8) and clonal a-cells ln-R1-G9 (9), activation of Vit receptors 

by AVP stimulates phospholipase C (PLC). PLC catalyzes the hydrolysis of 

phosphatidyiinositol-4,5-bisphosphate (PIP2) to IP3, a second messenger that releases 

Ca^^ from the endoplasmic reticulum (ER), and DAG, which activates cPKCs and nPKCs 

(10). 

It is well established that Ca^^ (11, 12) and PKC (13, 14) play an important role 

in the regulation of glucagon release from endocrine a-cells. Phorbol-12 myristate 13-

acetate (PMA), which is known to activate cPKCs and nPKCs, has been found to 

stimulate glucagon release from isolated rat islets (13, 14). However, in clonal a-cell 

line ln-R1-G9, activation of cPKCs and nPKCs by OAG, a DAG analog, and PMA 

attenuated AVP-induced increases in IP3 production and [Ca^^li (15). Ro 31-8220, a 

specific PKC inhibitor for all PKC isozymes (16), enhanced AVP-induced increases in IP3 

production and [Ca^^], (15). In addition, down regulation of cPKCs and nPKCs by 

pretreating ln-R1-G9 cells with PMA for 72 h potentiated AVP-induced increase in 

[Ca^"^], (15). These findings suggest that, in ln-R1-G9 cells, PKC exerts a negative 

feedback on AVP-induced increase in IP3 production, causing an attenuation of the 

increase in [Ca^"^],. However, the role of PKC on AVP-induced glucagon release from 

this clonal cell line remains to be determined. 

In the present study, we used a number of PKC inhibitors and PKC activators to 

determine the role of PKC isozymes on AVP-induced glucagon release from ln-R1-G9 

cells. These include Go 6976, CGP 53506, CGP 54345, and LY 379196, which are 

specific for the inhibition of cPKC isozymes; Ro 31-8220, which inhibits all PKC 

isozymes (16); pseudosubstrate peptide specifics for cPKCs (Myr-Phe-Ala-Arg-Lys-Gly-

Ala-Leu-Arg-GIn, PKC 20-28), and aPKCs (Myr-Arg-Arg-Gly-Ala-Arg-Arg-Trp-Arg-Lys, 

peptide Z) to determine which PKC isozymes are involved in AVP-induced glucagon 

release. In addition, we investigated the effects of OAG and PMA, the activators of 

cPKCs and nPKCs, on AVP-induced glucagon release. We further down-regulated 
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cPKCs and nPKCs by treating the cells with PMA (200 nM) for 72 h and used it as a 

means to examine the role of PKC isozymes on AVP-induced glucagon release. 

MATERIALS AND METHODS 

Cell culture 

The hamster glucagonoma ln-R1-G9 cells were maintained in RPMI-1640 

medium with 10% fetal bovine serum and aerated with 5% C02-95% air at 37°C. All 

experiments were performed using cells from passages 24 to 30. 

Glucagon release 

In-R1-G9 cells were plated into Corning 24-well plates at 10® cells/well and were 

grown for 3-4 days. The culture medium was then removed and replaced with 

modified Krebs-Ringer bicarbonate buffer (KRB) containing (in mM): 136 NaCI, 4.8 KCI, 

2.5 CaCIa, 1.2 KH2PO4, 1.2 MgS04, 5 NaHCOg, 10 HEPES, 1.67 glucose and 0.1% 

BSA, pH 7.4. The cells were then preincubated at 37°C with KRB for 15 min before 

administration of AVP (100 nM) for 15 min as a positive control. The following drugs 

were used in the study: PMA, GAG, CGP 53506, CGP 54345, LY 379196, and Go 

6976 were given 10 min, a pseudosubstrate peptide inhibitor specific for cPKCs (PKC 

19-31), and for aPKCs (peptide Z) were given 45 min, and Ro 31-8220 was given 30 

min prior to the administration of AVP. For down regulation of PKC, the cells were 

treated with 200 nM PMA in culture media for 72 h, and resuspended in KRB during 

the experiment. The cells were then treated with AVP alone or AVP in KRB containing 

one of the antagonists for 1 5 min. After the treatments, the supernatant was collected 

and the concentration of glucagon was measured by radioimmunoassay, following the 

procedures provided by Unco Research. 

Statistical Analysis 

Ail values were normalized as percentage of basal control group and presented 

as mean ± S.E.M. Because most of the stimulators and inhibitors used in this study 

themselves significantly increased glucagon release, the absolute increases of glucagon 
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release obtained from the treated groups minus the stimulator/inhibitor alone groups 

were analyzed using ANOVA and mean comparisons were made using the Fisher least 

significant difference test. The significance level was set at P < 0.05. 

Reagents 

RPMI 1640 medium, fetal bovine serum, AVP, PMA, and OAG were purchased 

from Sigma Chemical (St. Louis, MO). Go 6976 was purchased from Biomol (Plymouth 

Meeting, PA). ^^®l-glucagon was purchased from Unco Research (St. Charles, MO). 

CGP 54345 and CGP 53506 were donated by Novartis Pharma (Basel, Switzerland). 

LY 379196 was donated by Eli Lilly (Indianapolis, IN), and Ro 31-8220 was donated by 

Roche (Hertfordshire, UK). Peptide Z and PKC (20-28) were synthesized by the Protein 

Facility, Iowa State University (Ames, lA). 

RESULTS 

Effects of Ro 31-8220, OAG, or PMA on AVP-induced glucagon release 

AVP (ICQ nM) significantly increased glucagon release ~3-6 fold over the 

basal level. This concentration of AVP was used throughout the study. Ro 31-

8220 (10 |a,M), a PKC inhibitor that inhibits all PKC isozymes (16), alone 

significantly increased glucagon release and it markedly enhanced AVP-induced 

glucagon release (Fig. 1A). 

OAG (30 laM), a DAG analog that is resistant to metabolism, and PMA 

(100 nM) also significantly increased glucagon release. However, they both 

totally inhibited AVP-induced glucagon release (Fig. IB and 1C). In addition, 

pretreatment with Ro 31-8220 (10 |aM) for 30 min abolished the inhibitory 

effects of OAG (Fig. 1B) and PMA (Fig. 1C) on AVP-induced glucagon release. 

The glucagon release in the presence of Ro 31-8220 and OAG or PMA was 

additive to that of Ro 31-8220, OAG or PMA alone. 
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In contrast to the acute effect of PMA, pretreatment of the cells with 

PMA (200 nM) for 72 h, which down-regulates cPKCs and nPKCs, enhanced 

AVP-induced glucagon release (Fig. 2). 

Effects of inhibitors of cPKCs on A VP-induced glucagon release 

Go 6976 (0.5 |aM), a specific inhibitor for PKC-a, -pi, and -jj, failed to 

alter AVP-induced glucagon release (Fig. 3). CGP 53506 (50 fxM; Fig. 4), an 

inhibitor specific for all cPKCs isozymes, CGP 54345 (100 ^iM; Fig. 5), an 

inhibitor specific for only PKC-a, and LY 379196 (0.3 ^M; Fig. 6), an inhibitor 

specific for only PKC-p, did not alter AVP-induced glucagon release. All of the 

antagonists, except LY 379196, alone that have been used in this study 

significantly increased glucagon releases (basal = 834 ±172 pg/well/15 min; 

Go 6976 = 1,370 ± 192 pg/weil/15 min; CGP 53506 = 2,555 ± 363 

pg/well/15 min; CGP 54345 = 1,516 ± 128 pg/well/15 min; LY 379196 = 

1,006 ± 222 pg/well/15 min; n = 4 cultures with triplicates). 

Effects of PKC pseudosubstrate peptides on A VP-induced glucagon release 

Two PKC psuedosubstrates peptides, PKC 20-28 and peptide Z, were 

used in this study. PKC 20-28 is a myristoylated peptide, Myr-Phe-Ala-Arg-Lys-

Gly-Ala-Leu-Arg-GIn, which is similar to the pseudosubstrate region of PKC-a 

and PKC-p. The pseudosubstrates occupy the active binding site of PKC, thus 

preventing the transformation of PKC from inactive to active state (17). The 

addition of myristic acid to this peptide is to increase its permeability to the cell 

membrane, thus penetrating into the cells and acting as an inhibitor for PKC (18, 

19). Pretreatment of the ln-Rl-G9 cells with 10 |xM PKC 20-28 for 45 min did 

not affect AVP-induced glucagon release (Fig. 7). Peptide Z (Myr-Arg-Arg-Gly-

Ala-Arg-Arg-Trp-Arg-Lys), is a myristoylated peptide with a sequence based on 

the pseudosubstrate regions of PKC-^ and PKC-X. Peptide Z has been shown to 

specifically inhibit PKC-(^ in clonal p-cells RINm5F (20), and Xenopus laevis 
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oocytes (21). In the present study, peptide Z (10 ^iM) significantly inhibited 

AVP-induced glucagon release by 40% (Fig. 8). Both PKC 20-28 (basal = 914 

±181 pg/well/15 min; PKC 18-28 = 1,365 ±332 pg/well/15 min; n = 4 

cultures with triplicates) and peptide Z (basal = 638 ± 153 pg/well/15 min; 

peptide Z = 808 ±138 pg/well/15 nnin; n = 5 cultures with triplicates) alone 

significantly increased glucagon release. 

DISCUSSION 

This study explored the role of PKC on AVP-induced glucagon release and 

the results suggested that activation of PKC exerted both inhibitory and 

stimulatory roles on AVP-induced glucagon release. Ro 31-8220, a derivative of 

staurosporine that can inhibit all PKC isozymes (16), enhanced AVP-induced 

glucagon release. In addition, PMA and GAG, which have been known to 

activate cPKCs and nPKCs, but not aPKCs, attenuated AVP-induced glucagon 

release. The inhibitory effects of PMA and OAG were antagonized by Ro 31-

8220, suggesting their specificity for PKC activation. Down regulation of cPKCs 

and nPKCs by treating the cells with PMA for 72 h enhanced AVP-induced 

glucagon release. These findings suggest that either cPKCs and/or nPKCs play 

an inhibitory role on AVP-induced glucagon release. Our previous report 

indicated that AVP activates PKC via DAG, which attenuates the AVP-induced 

increases in IP3 production and [Ca^"^], (10). Together, it is likely that cPKCs 

and/or nPKCs exerted a negative feedback to inhibit IP3 production induced by 

AVP, leading to an attenuation of AVP-induced [Ca^^], increase, thus decreasing 

glucagon release. 

In an attempt to discriminate between cPKCs and nPKCs as the ones that 

play the negative role on AVP-induced glucagon release, we utilized a number of 

PKC antagonists specific for cPKC isozymes, as well as a synthetic 

pseudosubstrate peptide specific for PKC-a and -p to inhibit AVP-induced 
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glucagon release. Unfortunately, specific inhibitors for nPKCs are not yet 

available for such a study. First, Go 6976, an indolocarbazole compound, which 

is a potent and specific inhibitor for PKC-a, -pi (22) and -|j, (23) failed to inhibit 

AVP-induced glucagon release. Second, CGP 54345, a selective inhibitor for 

PKC-a, and CGP 53506, a selective inhibitor for cPKCs (i.e., a, p, and y) (22) 

also failed to alter AVP-induced glucagon release. They both are derivatives of 

phenylamino-pyridine compound. Third, LY 379196, which is the inhibitor 

specific for only PKC-pi and -pil (24, 25) with IC50 values of 0.05 and 0.03 |aM, 

respectively, did not affect AVP-induced glucagon release. The IC50 values of 

LY 379196 against other PKC isozymes are as follows (in |j,M): 0.6 for PKC-a 

and -y; 0.7 for PKC-5, 5 for PKC-s, 48 for PKC-(^, and 0.3 for PKC-T]. At a 

concentration of 0.6 |aM, LY 379196 will show non-specific PKC inhibition (Dr. 

James R. Gillig, personal communication). Fourth, PKC 20-28, a 

pseudosubstrate peptide inhibitor of PKC-a and -p, did not significantly inhibit 

AVP-induced glucagon release. These findings led to the conclusion that cPKCs 

are not involved, but nPKCs; including 5, s, ri,and 0, may exert an inhibitory 

effect on AVP-induced glucagon release. This is consistent with our 

unpublished data from Western blot experiments, in which cPKCs appear not to 

be present in this clonal cell line (ln-R1-G9). nPKCs have been reported to be 

involved in the negative regulation of HCI secretion from the parietal cells (26). 

However, this finding is different from the ones in human insulinoma cells and 

rat isolated islets, in which cPKCs stimulated insulin release (27, 28). 

When the effect of peptide Z, a pseudosubstrate peptide specific for 

aPKCs, was examined, it appeared that PKC-i!^ and/or -X may be involved in the 

stimulatory effect of AVP on glucagon release, because peptide Z reduced AVP-

induced glucagon release by 40%. Although Ro 31-8220 can inhibit all PKC 

isozymes in other cells, we hypothesize that it may not inhibit aPKCs in In-RI-

G9 cells, thus pretreatment of these cells with Ro 31-8220 enhanced AVP-

induced glucagon release. Further work is needed to determine if Ro 31-8220 
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inhibits aPKCs in these cells. Since the present findings were obtained using 

pharmacologic tools, which have shown sonne non-specific effects of these 

drugs, further work using Western blot in the presence and absence of these 

drugs is warranted to confirm and extend these findings. 

Activation of PKC increases glucagon release from the rat islets (13, 14). 

In the present study, we found that treatment of the cells with PMA and OAG 

significantly increased glucagon release. However, after down-regulation of 

PKC by a 72-h PMA treatment, PMA and OAG were still able to increase 

glucagon release, suggesting that both activators may increase glucagon release 

through the mechanism that is independent of PKC activation (unpublished 

data). This finding is consistent with some previous reports, in which PMA 

exhibited some effects that are not pertinent to PKC activation. For instance, 

PMA stimulates acetylcholine synthesis in cultured endothelial cells through a 

PKC-independent mechanism (29). PMA also inhibits phosphoinositide 

hydrolysis via targets other than PKC in the chicken sympathetic neurons and 

rat chromaffin cells (30). However, the mechanisms, by which most of the 

antagonists used in this study, including OAG increased glucagon release, 

remain unknown. 

In conclusion, the results of the present study suggested that nPKC isozymes 

may play an inhibitory role on AVP-induced [Ca^"^]i increase, which is due to a negative 

feedback on AVP-induced increase in IP3 production. The attenuation of the increase in 

[Ca^"^]! contributes to attenuation in AVP-induced glucagon release. On the other hand, 

atypical PKC isozyme ^ and/or -A, may at least partially mediate AVP-induced glucagon 

release from ln-R1-G9 cells. 
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Fig. 1. Effects of Ro-31-8220 (A), OAG, Ro-31-8220 + OAG; (B), PMA and Ro 31-

8220+ PMA (C) on AVP-induced glucagon release. Ro 31-8220 (10 |aM) was given 30 

min and OAG (30 )liM) or PMA (0.1 |a.M) was given 10 min before the administration of 

AVP (100 nM). Static incubation was performed for 15 min to determine the glucagon 

release. The glucagon release in the basal control group was 958 ± 375 pg/well/15 min 

for panel A, 974 ± 236 pg/well/15 min for panel B, and 1184 ± 719 pg/weII/15 min for 

panel C. Values are mean ± SE (n = 3 cultures with quadruplicates). * P < 0.05, 

compared the delta increase (the absolute increase of glucagon level obtained from the 

treated groups minus the antagonist alone groups) of the antagonist-treated group with 

the AVP-treated groups. 
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Fig. 2. . Effect of PMA (200 nM) pretreatment for 72 h on AVP (100 nM)-induced 

glucagon release. Static incubation was performed for 15 min to determine the 

glucagon release. The glucagon release in the basal control group was 579 ±118 

pg/well/15 min for normal ceils and 570 ± 208 pg/well/15 min for PMA treated cells. 

Values are mean ± SE (n = 3 cultures with quadruplicates). * P < 0.05, in comparison 

of delta increase of each treatment with the basal control group. " P < 0.05, compared 

the normal to PMA-treated group with regard to the delta increases after AVP 

treatment. 
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Fig. 3. Effect of Go 6976 on AVP-induced glucagon release. Go 6976 (0.5 j^M) was 

given 10 min before the administration of AVP (100 nM). Static incubation was 

performed for 1 5 min to determine the glucagon release, which was 579 + 118 

pg/well/15 min in the basal control group. Values are mean ± SE (n = 3 cultures with 

quadruplicates). * P < 0.05, compared with the basal control group. 
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Fig. 4. Effect of CGP 53506 on AVP-induced glucagon release. CGP 53506 (50 )iM) 

was given 10 min before the administration of AVP (100 nM). Static incubation was 

performed for 15 min to determine the glucagon release, which was 834 ± 172 

pg/well/15 min in the basal control group. Values are mean ± SE (n = 4 cultures with 

quadruplicates). * P < 0.05, compared with the basal control group. 
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Fig. 5. Effect of CGP 54345 on AVP-induced glucagon release. CGP 54345 (ICQ jiM) 

was given 10 min before the administration of AVP (100 nM). Static incubation was 

performed for 1 5 min to determine the glucagon release, which was 834 ± 172 

pg/well/l 5 min in the basal control group. Values are mean ± SE (n = 4 cultures with 

quadruplicates). * P < 0.05, compared with the basal control group. 
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Fig. 6. Effect of LY 39196 on AVP-induced glucagon release. LY 39196 (300 nM) 

was given 10 min before the administration of AVP (100 nM). Static incubation was 

performed for 15 min to determine the glucagon release, which was 834 ± 172 

pg/well/15 min in the basal control group. Values are mean ± SB (n = 4 cultures with 

quadruplicates). * P < 0.05, compared with the basal control group. 
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Fig. 7. Effect of pseudosubstrate peptide specific for cPKCs (PKC 18-28) on AVP-

induced glucagon release. PKC 18-28 (10 ^iM) was given 45 min before the 

administration of AVP (100 nM). Static incubation was performed for 15 min to 

determine the glucagon release, which was 914 ± 181 pg/well/15 min in the basal 

control group. Values are mean ± SE (n = 4 cultures with quadruplicates). * P < 

0.05, compared with the basal control group. 
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Fig. 8. Effect of pseudosubstrate peptide specific for aPKCs (Peptide Z) on AVP-

induoed glucagon release. Peptide Z (10 |iM) was given 45 min before the 

administration of AVP (ICQ nM). Static incubation was performed for 15 min to 

determine the glucagon release, which was 914 ± 181 pg/well/15 min in the basal 

control group. Values are mean + SE (n = 4 cultures with quadruplicates). * P < 

0.05, compared between delta increases of peptide Z + AVP group and the AVP 

group. 
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CHAPTER VII GENERAL CONCLUSIONS 

General Discussion 

This chapter contains the discussion of all the major conclusions obtained from 

the present study that may be found in the Discussion section of each chapter. In 

addition, it consists of the discussion of possible physiological and clinical implications, 

as well as the suggestion for further study that is related to our experimental findings. 

Receptors mediating A VP- and OT-induced glucagon release 

AVP and OT influence a number of biological activities. Both peptides and their 

receptors are found in the pancreas and stimulate glucagon and insulin release 

(Altszuler and Hamshire, 1981; Amico et al., 1988, Dunning et al., 1988). However, 

they exhibit a greater impact on glucagon release than insulin release because a low 

concentration of AVP and OT (20 pg/ml) caused an increase in glucagon release, but 

not insulin release from the perfused rat pancreas (Dunning et al., 1984). In addition, 

they elicited a concentration-dependent stimulation of glucagon release, but not insulin 

release from rat islets (Dunning et al., 1984). 

According to the data of the present study obtained from in situ pancreatic 

perfusions, AVP and OT at 3-30 pM concentrations, similar to those existing in plasma 

(Franchini and Cowley, 1996; Kjaer et al., 1995), significantly increase glucagon 

release. These results are consistent to those of Dunning et al. (1984) who reported 

that a small amount of neurohypophysial lobe extract (0.025 NL eq/ml) stimulates an 

increase in glucagon release from rat pancreatic islets. In addition. Dunning et al. 

(1985) found that plasma glucagon level in the rat is elevated in response to the 

increases in AVP and OT concentrations associated with hemorrhage. AVP and OT 

may physiologically regulate glucagon release from the rat pancreas, but whether these 

two peptides exert peripheral or paracrine effects on glucagon release is unclear. 

High concentrations of AVP and OT are found in the pancreas and these could 

exert a paracrine function on pancreatic hormone release (Amico et al., 1988). 

Diabetes mellitus is one of the most serious metabolic diseases and insulin release is 

decreased or abolished in diabetic patients, leading to hyperglycemia. In addition, most 
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of these patients have excessive glucagon release, which further aggravates 

hyperglycemia in diabetes {Linger and Orci, 1995). The plasma concentrations of AVP 

and OT are also higher in the diabetic patients than normal persons (Tallroth et al., 

1992; Volpi et al., 1998). A morphometric study showed that both AVP- and OT-

immunoreactive neuronal somata of the supraoptic nucleus (SON) and the 

paraventricular nucleus (PVN) in the diabetic rats underwent marked hypertrophy, 

representing hyperactivity of both peptides' immunoreactive neurons (Dheen et al., 

1994). Furthermore, there is evidence showing that elevated plasma concentration of 

OT, e.g., as seen in response to suckling in lactating rats, are accompanied by a rise of 

glucagon release which is blocked by an OT receptor antagonist (Bjorkstrand et al., 

1996), In conclusion, AVP and OT seem to exert both paracrine and peripheral 

functions to physiologically increase glucagon release. Moreover, they may play a 

major pathological role in the hypersecretion of glucagon in diabetic subjects. 

AVP and OT exert their effects through at least 4 different types of receptors, 

including Via, and OT receptors. The V^b receptor mRNA has been detected in 

the pancreas (Saito et a!., 1995) and the high density of ^H-labeled OT binding has 

been demonstrated in the periphery of islets that corresponds to the location of 

pancreatic a-cells (Stock et al., 1990). Since CL-4-84, an antagonist with potent V,,, 

blocking activity, dose-dependently inhibits AVP-induced glucagon release from the 

perfused rat pancreas and inhibits the binding of fluorescence-labeled VP to its receptor 

in the rat islets, it appears that AVP induces glucagon release by activating Vib 

receptors in the rat pancreas. In addition, the potent and selective OT receptor 

antagonist, L 366,948, dose-dependently inhibits OT-induced glucagon release from the 

perfused rat pancreas and inhibits the binding of fluorescence-labeled OT to its receptor 

in the rat islets. These results suggest that OT induces glucagon release by activating 

OT receptors in the rat pancreas. However, in clonal a-cell line ln-R1-G9, both AVP 

and OT may induce glucagon release by acting through Vib receptors, because CL-4-84 

and other antagonists with Vib blocking activity, but not L 366,948, dose-dependently 

inhibit the effect of OT-induced glucagon release in ln-R1-G9 cells. This cell line 

appears not to express OT receptors, and thus is not a good model to study the 

mechanism underlying OT-induced glucagon release. Further studies utilizing molecular 

biology are warranted to confirm the present findings. 



www.manaraa.com

145 

Since AVP and OT may aggravate hyperglycemia in diabetic subjects by 

increasing glucagon secretion, it is likely that the use of V,b and OT receptor 

antagonists may help decrease glucagon release in these patients. Further work is 

needed to prove or disprove this hypothesis. 

Mechanisms underlying AVP-induced glucagon release in ln-R1-G9 cells 

The information that many hormones and neurotransmitters transmitted to the 

cells is transduced by a membranous signaling system of G-protein-coupled receptors. 

The activated receptors mediate the processes that increase the concentration of 

second messengers in the cytosol, leading to the activation of downstream effectors 

(Offermanns and Schultz, 1994). The signaling pathway of AVP-coupled V, receptor is 

generally through the activation of Gq/n, which exerts multiple signal transduction 

pathways, such as PLC, PLD, and PLA2 in smooth muscle cells and CHO cells with Via 

receptor expression (Briley et al., 1994; Thibonnier et al., 1993). In clonal p cells 

RINm5F, AVP also activates multiple signal transductions, including PLC and PLD 

pathways (Chen et al., 1994). 

Although Ca^^ is hypothesized to be a major signal for glucagon release, the 

results obtained from the present study showed that AVP stimulated glucagon release 

through both Ca^^-dependent and -independent pathways in ln-R1-G9 cells. Activation 

of PLC by AVP is considered as the major Ca^'^-dependent pathway. When AVP binds 

to Vib receptor, it activates a G-protein, probably G,, which in turn activates PLC. 

Activation of PLC catalyzes the hydrolysis of PIP2 to generate IP3 and DAG. IP3 

releases Ca^"^ from the ER, which in turn induces Ca^^ influx. This mechanism is so 

called the "capacitative mechanism" (Putney, 1990); however, the mechanisms 

underlying Ca^"^ influx after rapid release of Ca^^ from the ER are still not well-

understood. The Ca^^ influx induced by the capacitative mechanism may be mediated 

through ROCs in ln-R1-G9 cells. A similar phenomenon has been observed in the CHO 

cells with stable expression of cloned Via receptors (Briley et al., 1994). Both Ca^"^ 

release and Ca^"^ influx contribute to glucagon release, because AVP-induced glucagon 

release was dramatically lower in the absence of extracellular Ca^^ than in the presence 

of extracellular Ca^^. 
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Even though PLC is the major mechanism for AVP-induced glucagon release, U-

73122, a PLC inhibitor, had much less impact on AVP-induced glucagon release than 

[Ca^^^lj increase, suggesting a PLC-independent pathway is involved. PLD seems to be 

the one that is involved in PLC-independent pathway of AVP-induced glucagon release, 

because zLYCK, an inhibitor of PLD (Kusaka et al., 1996), markedly inhibited AVP-

induced glucagon release in the present study. In addition, bacterial PLD from 

Streptomyces sp. increased glucagon release in a concentration-dependent manner 

under both normal and Ca^^-deprived condition (unpublished data). However, further 

investigations such as the measurement of PLD activity before and after AVP 

administration is needed to test this hypothesis. In addition, it would be worthwhile to 

study the effect of simultaneous pretreatment of ln-R1-G9 cells with PLC and PLD 

inhibitors on AVP-induced glucagon release to answer the question whether AVP 

induces glucagon release through both of these pathways. Based on our findings, we 

also conclude that PLAz may not be involved in AVP-induced glucagon release. This is 

similar to what happens with the clonal p ceils RINm5F, in which PLAj does not 

mediate AVP-induced insulin release (Chen et al., 1994). 

In addition to the Ca^^-dependent pathway, AVP stimulates glucagon release 

under Ca^'^-deprived condition, which suggests that the Ca^^-independent pathway is 

involved in AVP-induced glucagon release. This mechanism is still not well-defined in 

ln-R1-G9 cells, because it is possible that the changes of [Ca^^]j are significant, but too 

small to be detected by the technique used in this study. Further investigations are 

needed to study AVP-induced [Ca^"*"], increase by using more specific and sophisticated 

tools that can determine the local changes of the [Ca^"^]i; for example simultaneously 

loading the cells with two different Ca^^ indicators, aequorin and fura-2. Aequorin can 

measure the focal increase in [Ca^^liin a small region of cytoplasm, and Fura-2 is 

predominantly a measure of mean cytoplasmic [Ca^^] (Rembold et al., 1995). Dual use 

of these two indicators may help to determine the local small changes of [Ca^^]|. In 

addition, the use of a confocal laser scanning microscope to determine the localized 

intracellular Ca^"^ gradients in the cells loaded with the Ca^^-sensitive dye Fura-2 may 

be useful to investigate the spatial and temporal heterogeneity of [Ca^"^]! signals in the 

cytosol in response to the agonist-evoked stimulation (Nitschke et al., 1997). These 
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advanced tools will provide precise measurements of [Ca^^li changes in specific regions 

of the cells. 

Nevertheless, a Ca^^-independent pathway may indeed exist in the AVP-induced 

glucagon release. One possibility is that AVP acts at a distal site beyond the point of 

increased [Ca^^li to trigger exocytosis. This would be similar to what has been found in 

RINmSF cells, in which carbachol stimulates insulin release by a direct action at the 

exocytotic apparatus to trigger exocytosis (Tang et. al, 1995). Further work is needed 

to identify this pathway by investigating the effect of AVP-induced glucagon release in 

the cells pretreated with tetanus and/or botulinum toxins under a stringent Ca^"^ 

deprivation (Fassio et al., 1999). Tetanus toxin is known to block exocytosis by 

cleaving the complex of vesicle-associated membrane protein (VAMP or synaptobrevin), 

and botulinum toxin is known to block exocytosis by cleaving syntaxin and SNAP-25 

(synaptosome-associated protein of 25 kDa). The VAMP, syntaxin and SNAP-25 are 

essential components of the exocytotic apparatus. 

Another possibility is that PLD may play a role in the Ca^"^-independent pathway 

of AVP mechanisms because the data from our preliminary experiment shows that a 

bacterial PLD significantly increased glucagon release under a stringent Ca^"^-

deprivation. Activation of PLD leads to the generation of PA that is converted to DAG 

by the action of phosphohydrolase. Atypical PKCs, PKC-(^ and PKC-A,, are activated by 

PA, but not by DAG (Dimitrijevic et al., 1995). in a Western blot study, we found that 

both PKC-(!; and PKC-A, were present in ln-R1-G9 cells; however, AVP activated only 

PKC-^, but not PKC-A, (unpublished data). In addition, a pseudosubstrate peptide 

inhibitor specific for PKC-^ and PKC-A, inhibited the AVP-induced glucagon release 

(unpublished results). It is likely that PLD activation, leading to the activation of PKC-^, 

may be involved in the Ca^^-independent pathway of AVP mechanisms. Activation of 

PLD is either dependent or independent of Ca^"*" (Lindmar and Loffelholz, 1998) and 

measurement of PLD activity induced by AVP under a stringent Ca^'*' deprivation and 

the immunoblotting analysis of PLD isozymes in ln-R1-G9 cells may provide clues to 

this question. 
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The roles of PKC isozyme in the regulation of AVP-induced [Ca^*^], increase and 

glucagon release 

PKC has been established for over ten years as a family of kinases that is 

responsible for many diverse and critical cellular functions; for example, it plays a role 

in cell-cell contact (Liosas et al., 1996), suppression of apoptosis (Romanova et al., 

1996) and the growth of cancer cells (Choi et al., 1990). Different PKC isozymes 

modulate exocytosis in various systems. cPKCs have been found to play a role in 

stimulation of gut hormones (e.g. gastrin, serotonin and somatostatin), including their 

synthesis and/or secretion (Kawakita et al., 1995), as well as stimulation of insulin 

release from human insulinoma cells (Miura et al., 1998). cPKC-a and nPKC-e, but not 

-8, increase the secretion of an N-terminal fragment of the amyloid precursor protein 

involved in Alzheimer's disease (Kinouchi et al., 1995). nPKC-e plays a stimulatory role 

in thyrotropin-releasing hormone-stimulated prolactin secretion (Akita et al., 1994), but 

in parietal cells, nPKCs may be involved in the inhibition of HCI secretion (Chew et al., 

1997). aPKC isozyme-i^ stimulates carbachol-induced insulin secretion in RINmBF cells 

(Tang and Sharp, 1998) and aPKCs also stimulate glucose-induced insulin release from 

pancreatic p-cells (Harris et al., 1996). The activation of PLC promotes the formation of 

DAG, which in turn activates cPKCs and nPKCs (Regazzi et al., 1990). The 

physiological function of PKC in glucagon release is unclear. PMA, an activator of 

cPKCs and nPKCs, has been found to increase glucagon release from rat islets (Hii et 

al., 1986; Niki et al., 1986). In addition, down regulation of PKC by pretreating the rat 

islets with 200 nM PMA for 18-24 h causes the impairment of arginine-induced 

glucagon release (Bjaaland et al., 1988). 

A number of highly specific PKC inhibitors have been developed in recent years 

(Hofmann, 1997). In this study, Ro 31-8220, an inhibitor for most of the PKC 

isozymes, enhanced AVP-induced IP3 formation, [Ca^"^], increase and glucagon release. 

In addition, PMA and OAG, activators of cPKCs and nPKCs, inhibit AVP-induced IP3 

formation, [Ca^"^], increase and glucagon release. These results suggest that cPKCs 

and/or nPKCs play a negative role in the regulation of AVP-induced glucagon release in 

ln-R1-G9 cells. Similar results are seen in clonal p cells (Yang et al., 1997), rat 
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glomerulosa (Gallo-Payet et al., 1991), and vascular smooth muscle cells (Stassen at 

al., 1989). 

In the present study, Go 6976, CGP 54345, CGP 53506, LY 379196, inhibitors 

of cPKCs, and a pseudosubstrate peptide specific for cPKCs, all failed to inhibit AVP-

induced glucagon release. These results suggested that cPKCs are not involved in 

AVP-induced glucagon release. In addition, the results from the Western blot 

experiments showed that PKC-a and -p were not detectable in ln-R1-G9 cells 

(unpublished data). A pseudosubstrate for aPKCs inhibited AVP-induced glucagon 

release. Taken together, our findings suggest that nPKCs play an inhibitory role and 

aPKCs play a stimulatory role on AVP-induced glucagon release in ln-R1-G9 cells. We 

further suggest that activation of nPKCs exhibit a negative feedback control on Vib 

receptor-Gq/11-PLC-p pathway to inhibit IP3 production, leading to an attenuation of 

AVP-induced [Ca^"^], increase and glucagon release. Further work using immunoblotting 

is needed to identify which isozymes indeed regulate the action of AVP in pancreatic a 

cells. 

It is likely that different PKC isozymes balance their functions in regulating AVP-

induced glucagon release by exerting both positive and negative impacts on AVP's 

actions. However, as we discussed earlier, AVP may play a role in the hypersecretion 

of glucagon in diabetic subjects, and specific inhibitor or antisenses against aPKCs may 

be useful in the control of diabetes mellitus. 

In summary, the results from the present study suggest that in a cells, AVP 

induces glucagon release through multiple signal transduction pathways that are both 

Ca^'^-dependent and Ca^'^-independent. For the Ca^^-dependent pathway, AVP 

activates Vn, receptors, which in turn, activates Gp. The G, protein activates PLC, 

causing increases in the formations of IP3 and DAG. IP3 releases Ca^"^ from the ER and 

triggers Ca^"^ influx through ROCs, leading to glucagon release. DAG activates PKC, 

which in turn exerts both inhibitory and stimulatory influences on AVP-induced 

glucagon release. nPKCs may inhibit AVP-induced IP3 production, attenuating AVP-

induced increase in Ca^"^ release and Ca^^ influx via the closure of ROCs, leading to a 

decrease in glucagon release. aPKCs may stimulate glucagon release through an 

unknown pathway. 
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